Summary:
This patch checks if the section order is correct when reading a wasm
object file in `WasmObjectFile` and converting YAML to wasm object in
yaml2wasm. (It is not possible to check when reading YAML because it is
handled exclusively by the YAML reader.)
This checks the ordering of all known sections (core sections + known
custom sections). This also adds section ID DataCount section that will
be scheduled to be added in near future.
Reviewers: sbc100
Subscribers: dschuff, mgorny, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54924
llvm-svn: 349221
Summary:
This allows us to register it with the MachineFunction delegate and be
notified automatically about erasure and creation of instructions. However,
we still need explicit notification for modifications such as those caused
by setReg() or replaceRegWith().
There is a catch with this though. The notification for creation is
delivered before any operands can be added. While appropriate for
scheduling combiner work. This is unfortunate for debug output since an
opcode by itself doesn't provide sufficient information on what happened.
As a result, the work list remembers the instructions (when debug output is
requested) and emits a more complete dump later.
Another nit is that the MachineFunction::Delegate provides const pointers
which is inconvenient since we want to use it to schedule future
modification. To resolve this GISelWorkList now has an optional pointer to
the MachineFunction which describes the scope of the work it is permitted
to schedule. If a given MachineInstr* is in this function then it is
permitted to schedule work to be performed on the MachineInstr's. An
alternative to this would be to remove the const from the
MachineFunction::Delegate interface, however delegates are not permitted
to modify the MachineInstr's they receive.
In addition to this, the observer has three interface changes.
* erasedInstr() is now erasingInstr() to indicate it is about to be erased
but still exists at the moment.
* changingInstr() and changedInstr() have been added to report changes
before and after they are made. This allows us to trace the changes
in the debug output.
* As a convenience changingAllUsesOfReg() and
finishedChangingAllUsesOfReg() will report changingInstr() and
changedInstr() for each use of a given register. This is primarily useful
for changes caused by MachineRegisterInfo::replaceRegWith()
With this in place, both combine rules have been updated to report their
changes to the observer.
Finally, make some cosmetic changes to the debug output and make Combiner
and CombinerHelp
Reviewers: aditya_nandakumar, bogner, volkan, rtereshin, javed.absar
Reviewed By: aditya_nandakumar
Subscribers: mgorny, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D52947
llvm-svn: 349167
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155
Summary:
The two utility functions were added in D47919 to support SHT_RELR.
However, these are just relative relocations types and are't
necessarily be named Relr.
Reviewers: phosek, dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55691
llvm-svn: 349133
build version load commands in the object file
This commit introduces a new metadata node called "SDK Version". It will be set
by the frontend to mark the platform SDK (macOS/iOS/etc) version which was used
during that particular compilation.
This node is used when machine code is emitted, by either saving the SDK version
into the appropriate macho load command (version min/build version), or by
emitting the assembly for these load commands with the SDK version specified as
well.
The assembly for both load commands is extended by allowing it to contain the
sdk_version X, Y [, Z] trailing directive to represent the SDK version
respectively.
rdar://45774000
Differential Revision: https://reviews.llvm.org/D55612
llvm-svn: 349119
Summary:
This patch computes the synthetic function entry count on the whole
program callgraph (based on module summary) and writes the entry counts
to the summary. After function importing, this count gets attached to
the IR as metadata. Since it adds a new field to the summary, this bumps
up the version.
Reviewers: tejohnson
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D43521
llvm-svn: 349076
Summary:
llvm-size uses "isText()" etc. which seem to indicate whether the section contains code-like things, not whether or not it will actually go in the text segment when in a fully linked executable.
The unit test added (elf-sizes.test) shows some types of sections that cause discrepencies versus the GNU size tool. llvm-size is not correctly reporting sizes of things mapping to text/data segments, at least for ELF files.
This fixes pr38723.
Reviewers: echristo, Bigcheese, MaskRay
Reviewed By: MaskRay
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54369
llvm-svn: 349074
This is split from D55452 with the correct patch this time.
Pairwise reductions require two shuffles on every level but the last. On the last level the two shuffles are <1, u, u, u...> and <0, u, u, u...>, but <0, u, u, u...> will be dropped by InstCombine/DAGCombine as being an identity shuffle.
Differential Revision: https://reviews.llvm.org/D55615
llvm-svn: 349072
When calling BinaryStreamArray::drop_front(), if the stream
is skewed it means we must never drop the first bytes of the
stream since offsets which occur in records assume the existence
of those bytes. So if we want to skip the first record in a
stream, then what we really want to do is just set the begin
pointer to the next record. But we shouldn't actually remove
those bytes from the underlying view of the data.
llvm-svn: 349066
Move existing rotation expansion code into TargetLowering and set it up for vectors as well.
Ideally this would share more of the funnel shift expansion, but we handle the shift amount modulo quite differently at the moment.
Begun removing x86 vector rotate custom lowering to use the expansion.
llvm-svn: 349025
Summary:
In addition to knowing that an instruction is changed. It's also useful to
know when it's about to change. For example, it might print the instruction so
you can track the changes in a debug log, it might remove it from some queue
while it's being worked on, or it might want to change several instructions as
a single transaction and act on all the changes at once.
Added changingInstr() to all existing uses of changedInstr()
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55623
llvm-svn: 348992
Summary:
There's little of interest that can be done to an already-erased instruction.
You can't inspect it, write it to a debug log, etc. It ought to be notification
that we're about to erase it. Rename the function to clarify the timing of the
event and reflect current usage.
Also fixed one case where we were trying to print an erased instruction.
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55611
llvm-svn: 348976
Use the replacement execute once threading support in LLVM for PPC64le. It
seems that GCC does not define `__ppc__` and so we would actually call out to
the C++ runtime there which is not what the current code intended. Check both
`__ppc__` and `__PPC__`. This avoids the need for checking the endianness.
Thanks to nemanjai for the hint about GCC's behaviour and the fact that the
reviewed condition could be simplified.
Original patch by Sarvesh Tamba!
llvm-svn: 348970
Continue to present HSA metadata as YAML in ASM and when output by tools
(e.g. llvm-readobj), but encode it in Messagepack in the code object.
Differential Revision: https://reviews.llvm.org/D48179
llvm-svn: 348963
This patch introduces a generic function to determine whether a given vector type is known to be a splat value for the specified demanded elements, recursing up the DAG looking for BUILD_VECTOR or VECTOR_SHUFFLE splat patterns.
It also keeps track of the elements that are known to be UNDEF - it returns true if all the demanded elements are UNDEF (as this may be useful under some circumstances), so this needs to be handled by the caller.
A wrapper variant is also provided that doesn't take the DemandedElts or UndefElts arguments for cases where we just want to know if the SDValue is a splat or not (with/without UNDEFS).
I had hoped to completely remove the X86 local version of this function, but I'm seeing some regressions in shift/rotate codegen that will take a little longer to fix and I hope to get this in sooner so I can continue work on PR38243 which needs more capable splat detection.
Differential Revision: https://reviews.llvm.org/D55426
llvm-svn: 348953
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D54719
llvm-svn: 348912
Without this check, we hit an assertion in getZExtValue, if the constant
value does not fit into an uint64_t.
As getZExtValue returns an uint64_t, should we update
getAggregateElement to take an uin64_t as well?
This fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=6109.
Reviewers: efriedma, craig.topper, spatel
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D55547
llvm-svn: 348906
https://reviews.llvm.org/D55516
Add the ability to pass in flags to buildInstr calls. Currently no
validation is performed but that can be easily performed based on the
opcode (if necessary).
Reviewed by: paquette.
llvm-svn: 348893
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.
Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740
llvm-svn: 348887
This change makes DT_SONAME treated as an optional trait for ELF TextAPI
stubs. This change accounts for the fact that shared objects aren't
guaranteed to have a DT_SONAME entry. Tests have been updated to check
for correct behavior of an optional soname.
Differential Revision: https://reviews.llvm.org/D55533
llvm-svn: 348817
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
Not sure how I missed that in my testing, but obvious enough - this
causes segfaults when attempting to dereference the Error in end
iterators.
llvm-svn: 348814
Using an Error as an out parameter from an indirect operation like
iteration as described in the documentation (
http://llvm.org/docs/ProgrammersManual.html#building-fallible-iterators-and-iterator-ranges
) seems to be a little fussy - so here's /one/ possible solution, though
I'm not sure it's the right one.
Alternatively such APIs may be better off being switched to a standard
algorithm style, where they take a lambda to do the iteration work that
is then called back into (eg: "Error e = obj.for_each_note([](const
Note& N) { ... });"). This would be safer than having an unwritten
assumption that the user of such an iteration cannot return early from
the inside of the function - and must always exit through the gift
shop... I mean error checking. (even though it's guaranteed that if
you're mid-way through processing an iteration, it's not in an error
state).
Alternatively we'd need some other (the super untrustworthy/thing we've
generally tried to avoid) error handling primitive that actually clears
the error state entirely so it's safe to ignore.
Fleshed this solution out a bit further during review - it now relies on
op==/op!= comparison as the equivalent to "if (Err)" testing the Error.
So just like an Error must be checked (even if it's in a success state),
the Error hiding in the iterator must be checked after each increment
(including by comparison with another iterator - perhaps this could be
constrained to only checking if the iterator is compared to the end
iterator? Not sure it's too important).
So now even just creating the iterator and not incrementing it at all
should still assert because the Error has not been checked.
Reviewers: lhames, jakehehrlich
Differential Revision: https://reviews.llvm.org/D55235
llvm-svn: 348811
Summary: The APFloat and Constant APIs taking an APInt allow arbitrary payloads,
and that's great. There's a convenience API which takes an unsigned, and that's
silly because it then directly creates a 64-bit APInt. Just change it to 64-bits
directly.
At the same time, add ConstantFP NaN getters which match the APFloat ones (with
getQNaN / getSNaN and APInt parameters).
Improve the APFloat testing to set more payload bits.
Reviewers: scanon, rjmccall
Subscribers: jkorous, dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D55460
llvm-svn: 348791
This patch restricts the capability of G_MERGE_VALUES, and uses the new
G_BUILD_VECTOR and G_CONCAT_VECTORS opcodes instead in the appropriate places.
This patch also includes AArch64 support for selecting G_BUILD_VECTOR of <4 x s32>
and <2 x s64> vectors.
Differential Revisions: https://reviews.llvm.org/D53629
llvm-svn: 348788
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, for the Exynos processors.
Differential revision: https://reviews.llvm.org/D55345
llvm-svn: 348774
Summary: The comment says we need 3 extracts and a select at the end. But didn't we just account for the select in the vector cost above. Aren't we just extracting the single element after taking the min/max in the vector register?
Reviewers: RKSimon, spatel, ABataev
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D55480
llvm-svn: 348739
Both intrinsics do the exact same thing so we really only need one.
Earlier in the 8.0 cycle we changed the signature of this intrinsic without renaming it. But it looks difficult to get the autoupgrade code to allow me to merge the intrinsics and change the signature at the same time. So I've renamed the intrinsic slightly for the new merged intrinsic. I'm skipping autoupgrading from the previous new to 8.0 signature. I've also renamed the subborrow for consistency.
llvm-svn: 348737
Since TBEHandler doesn't maintain state or otherwise have any need to be
a class right now, the read and write functions have been moved out and
turned into standalone functions. Additionally, the TBE read function
has been updated to return an Expected value for better error handling.
Tests have been updated to reflect these changes.
Differential Revision: https://reviews.llvm.org/D55450
llvm-svn: 348735
This trait is used by several AST visitor classes to control whether the AST is visiting const nodes or non-const nodes. These uses cannot be easily replaced with the STL traits directly due to use of an unspecialized templated when a type is expected (due to the template template parameter involved).
llvm-svn: 348729
PE/COFF sections can have section names truncated to 8 chars, in order to
have the name available at runtime. (The string table, where long untruncated
names are stored, isn't loaded at runtime.)
This allows various llvm tools to dump the .eh_frame section from such
executables.
Patch by Peiyuan Song!
Differential Revision: https://reviews.llvm.org/D55407
llvm-svn: 348708
Summary:
WasmSignature used to use its `WasmSignature` member variable only for
function types, but now it also can be used for events as well.
Reviewers: sbc100
Subscribers: dschuff, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55247
llvm-svn: 348702
`Saver` is a StringSaver, which has a few overloads of `save` that all
ultimately just call `StringRef save(StringRef)`. Just take a StringRef
here instead of building up a std::string to convert it to a StringRef.
llvm-svn: 348650
Previously we would create an lldb::Function object for each function
parsed, but we would not add these to the clang AST. This is a first
step towards getting local variable support working, as we first need an
AST decl so that when we create local variable entries, they have the
proper DeclContext.
Differential Revision: https://reviews.llvm.org/D55384
llvm-svn: 348631
We were overcounting the number of arithmetic operations needed at each level before we reach a legal type. We were using the full vector type for that level, but we are going to split the input vector at that level in half. So the effective arithmetic operation cost at that level is half the width.
So for example on 8i32 on an sse target. Were were calculating the cost of an 8i32 op which is likely 2 for basic integer. Then after the loop we count 2 more v4i32 ops. For a total arith cost of 4. But if you look at the assembly there would only be 3 arithmetic ops.
There are still more bugs in this code that I'm going to work on next. The non pairwise code shouldn't count extract subvectors in the loop. There are no extracts, the types are split in registers. For pairwise we need to use 2 two src permute shuffles.
Differential Revision: https://reviews.llvm.org/D55397
llvm-svn: 348621