1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
Commit Graph

458 Commits

Author SHA1 Message Date
Chandler Carruth
cd49bfab29 Remove the BBVectorize pass.
It served us well, helped kick-start much of the vectorization efforts
in LLVM, etc. Its time has come and past. Back in 2014:
http://lists.llvm.org/pipermail/llvm-dev/2014-November/079091.html

Time to actually let go and move forward. =]

I've updated the release notes both about the removal and the
deprecation of the corresponding C API.

llvm-svn: 306797
2017-06-30 07:09:08 +00:00
Daniel Jasper
8d76d09d77 Revert "r306529 - [X86] Correct dwarf unwind information in function epilogue"
I am 99% sure that this breaks the PPC ASAN build bot:
http://lab.llvm.org:8011/builders/sanitizer-ppc64be-linux/builds/3112/steps/64-bit%20check-asan/logs/stdio

If it doesn't go back to green, we can recommit (and fix the original
commit message at the same time :) ).

llvm-svn: 306676
2017-06-29 13:58:24 +00:00
Petar Jovanovic
0199002e6e [X86] Correct dwarf unwind information in function epilogue
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.

Majority of the changes in this patch:

1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.

These changes are target independent and described below.

Changed CFI instructions so that they:

1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal

Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.

Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.

Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D18046

llvm-svn: 306529
2017-06-28 10:21:17 +00:00
Eric Christopher
2152bd6a82 Remove the LoadCombine pass. It was never enabled and is unsupported.
Based on discussions with the author on mailing lists.

llvm-svn: 306067
2017-06-22 22:58:12 +00:00
Quentin Colombet
800548d72d Change code formatting to look like the surrounding code
clang-format decided differently and Matthias pointed out the
difference.

llvm-svn: 304608
2017-06-02 23:07:58 +00:00
Matthias Braun
5693b1e8e8 RegisterScavenging: Add ScavengerTest pass
This pass allows to run the register scavenging independently of
PrologEpilogInserter to allow targeted testing.

Also adds some basic register scavenging tests.

llvm-svn: 304606
2017-06-02 23:01:42 +00:00
Matthias Braun
0531e97657 InitializePasses: Sort initializer list (by ASCII)
llvm-svn: 304605
2017-06-02 23:01:38 +00:00
Quentin Colombet
778a3ceaae [RABasic] Properly initialize the pass
Use the initializeXXX method to initialize the RABasic pass in the
pipeline. This enables us to take advantage of the .mir infrastructure.

llvm-svn: 304602
2017-06-02 22:46:26 +00:00
Dehao Chen
a12a4b963e Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 304371
2017-05-31 23:25:25 +00:00
Quentin Colombet
68245049cd [GlobalISel] Add a localizer pass for target to use
This reverts commit r299287 plus clean-ups.

The localizer pass is a helper pass that could be run at O0 in the GISel
pipeline to work around the deficiency of the fast register allocator.
It basically shortens the live-ranges of the constants so that the
allocator does not spill all over the place.

Long term fix would be to make the greedy allocator fast.

llvm-svn: 304051
2017-05-27 01:34:00 +00:00
James Molloy
e219c46616 [GVNSink] GVNSink pass
This patch provides an initial prototype for a pass that sinks instructions based on GVN information, similar to GVNHoist. It is not yet ready for commiting but I've uploaded it to gather some initial thoughts.

This pass attempts to sink instructions into successors, reducing static
instruction count and enabling if-conversion.
We use a variant of global value numbering to decide what can be sunk.
Consider:

[ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ]
[ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ]
                 \           /
           [ %e = phi i32 %a2, %c2 ]
           [ add i32 %e, 4         ]

GVN would number %a1 and %c1 differently because they compute different
results - the VN of an instruction is a function of its opcode and the
transitive closure of its operands. This is the key property for hoisting
and CSE.

What we want when sinking however is for a numbering that is a function of
the *uses* of an instruction, which allows us to answer the question "if I
replace %a1 with %c1, will it contribute in an equivalent way to all
successive instructions?". The (new) PostValueTable class in GVN provides this
mapping.

This pass has some shown really impressive improvements especially for codesize already on internal benchmarks, so I have high hopes it can replace all the sinking logic in SimplifyCFG.

Differential revision: https://reviews.llvm.org/D24805

llvm-svn: 303850
2017-05-25 12:51:11 +00:00
Hans Wennborg
bcfc1f4e44 Revert r302938 "Add LiveRangeShrink pass to shrink live range within BB."
This also reverts follow-ups r303292 and r303298.

It broke some Chromium tests under MSan, and apparently also internal
tests at Google.

llvm-svn: 303369
2017-05-18 18:50:05 +00:00
Ayman Musa
46c492dbd0 [X86] Relocate code of replacement of subtarget unsupported masked memory intrinsics to run also on -O0 option.
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).

CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).

Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.

Differential Revision: https://reviews.llvm.org/D32487

llvm-svn: 303050
2017-05-15 11:30:54 +00:00
Dehao Chen
d7d29ebf8d Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 302938
2017-05-12 19:29:27 +00:00
Amara Emerson
668fbd4cf5 Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245

llvm-svn: 302631
2017-05-10 09:42:49 +00:00
Ahmed Bougacha
9346441008 [CodeGen] Split SafeStack into a LegacyPass and a utility. NFC.
This lets the pass focus on gathering the required analyzes, and the
utility class focus on the transformation.

Differential Revision: https://reviews.llvm.org/D31303

llvm-svn: 302609
2017-05-10 00:39:22 +00:00
Chandler Carruth
99ee90db82 [PM/LoopUnswitch] Introduce a new, simpler loop unswitch pass.
Currently, this pass only focuses on *trivial* loop unswitching. At that
reduced problem it remains significantly better than the current loop
unswitch:
- Old pass is worse than cubic complexity. New pass is (I think) linear.
- New pass is much simpler in its design by focusing on full unswitching. (See
  below for details on this).
- New pass doesn't carry state for thresholds between pass iterations.
- New pass doesn't carry state for correctness (both miscompile and
  infloop) between pass iterations.
- New pass produces substantially better code after unswitching.
- New pass can handle more trivial unswitch cases.
- New pass doesn't recompute the dominator tree for the entire function
  and instead incrementally updates it.

I've ported all of the trivial unswitching test cases from the old pass
to the new one to make sure that major functionality isn't lost in the
process. For several of the test cases I've worked to improve the
precision and rigor of the CHECKs, but for many I've just updated them
to handle the new IR produced.

My initial motivation was the fact that the old pass carried state in
very unreliable ways between pass iterations, and these mechansims were
incompatible with the new pass manager. However, I discovered many more
improvements to make along the way.

This pass makes two very significant assumptions that enable most of these
improvements:

1) Focus on *full* unswitching -- that is, completely removing whatever
   control flow construct is being unswitched from the loop. In the case
   of trivial unswitching, this means removing the trivial (exiting)
   edge. In non-trivial unswitching, this means removing the branch or
   switch itself. This is in opposition to *partial* unswitching where
   some part of the unswitched control flow remains in the loop. Partial
   unswitching only really applies to switches and to folded branches.
   These are very similar to full unrolling and partial unrolling. The
   full form is an effective canonicalization, the partial form needs
   a complex cost model, cannot be iterated, isn't canonicalizing, and
   should be a separate pass that runs very late (much like unrolling).

2) Leverage LLVM's Loop machinery to the fullest. The original unswitch
   dates from a time when a great deal of LLVM's loop infrastructure was
   missing, ineffective, and/or unreliable. As a consequence, a lot of
   complexity was added which we no longer need.

With these two overarching principles, I think we can build a fast and
effective unswitcher that fits in well in the new PM and in the
canonicalization pipeline. Some of the remaining functionality around
partial unswitching may not be relevant today (not many test cases or
benchmarks I can find) but if they are I'd like to add support for them
as a separate layer that runs very late in the pipeline.

Purely to make reviewing and introducing this code more manageable, I've
split this into first a trivial-unswitch-only pass and in the next patch
I'll add support for full non-trivial unswitching against a *fixed*
threshold, exactly like full unrolling. I even plan to re-use the
unrolling thresholds, as these are incredibly similar cost tradeoffs:
we're cloning a loop body in order to end up with simplified control
flow. We should only do that when the total growth is reasonably small.

One of the biggest changes with this pass compared to the previous one
is that previously, each individual trivial exiting edge from a switch
was unswitched separately as a branch. Now, we unswitch the entire
switch at once, with cases going to the various destinations. This lets
us unswitch multiple exiting edges in a single operation and also avoids
numerous extremely bad behaviors, where we would introduce 1000s of
branches to test for thousands of possible values, all of which would
take the exact same exit path bypassing the loop. Now we will use
a switch with 1000s of cases that can be efficiently lowered into
a jumptable. This avoids relying on somehow forming a switch out of the
branches or getting horrible code if that fails for any reason.

Another significant change is that this pass actively updates the CFG
based on unswitching. For trivial unswitching, this is actually very
easy because of the definition of loop simplified form. Doing this makes
the code coming out of loop unswitch dramatically more friendly. We
still should run loop-simplifycfg (at the least) after this to clean up,
but it will have to do a lot less work.

Finally, this pass makes much fewer attempts to simplify instructions
based on the unswitch. Something like loop-instsimplify, instcombine, or
GVN can be used to do increasingly powerful simplifications based on the
now dominating predicate. The old simplifications are things that
something like loop-instsimplify should get today or a very, very basic
loop-instcombine could get. Keeping that logic separate is a big
simplifying technique.

Most of the code in this pass that isn't in the old one has to do with
achieving specific goals:
- Updating the dominator tree as we go
- Unswitching all cases in a switch in a single step.

I think it is still shorter than just the trivial unswitching code in
the old pass despite having this functionality.

Differential Revision: https://reviews.llvm.org/D32409

llvm-svn: 301576
2017-04-27 18:45:20 +00:00
Rong Xu
2501ed842c [PGO] Memory intrinsic calls optimization based on profiled size
This patch optimizes two memory intrinsic operations: memset and memcpy based
on the profiled size of the operation. The high level transformation is like:
  mem_op(..., size)
  ==>
  switch (size) {
    case s1:
       mem_op(..., s1);
       goto merge_bb;
    case s2:
       mem_op(..., s2);
       goto merge_bb;
    ...
    default:
       mem_op(..., size);
       goto merge_bb;
    }
  merge_bb:

Differential Revision: http://reviews.llvm.org/D28966

llvm-svn: 299446
2017-04-04 16:42:20 +00:00
Quentin Colombet
24093ddd16 Revert "Localizer fun"
This reverts commit r299283.

Didn't intend to commit this :(

llvm-svn: 299287
2017-04-01 01:26:21 +00:00
Quentin Colombet
425516ac9d Localizer fun
WIP

llvm-svn: 299283
2017-04-01 01:21:28 +00:00
Joerg Sonnenberger
a1971791a7 Split the SimplifyCFG pass into two variants.
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.

The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.

Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.

Differential Revision: https://reviews.llvm.org/D30333

llvm-svn: 298799
2017-03-26 06:44:08 +00:00
Anna Thomas
39cb171e59 [LVI] Add an LVI printer pass to capture test LVI cache after transformations
Summary:
Adding a printer pass for printing the LVI cache values after transformations
that use LVI.
This will help us in identifying cases where LVI
invariants are violated, or transforms that leave LVI in an incorrect state.
Right now, I have added two test cases to show that the printer pass is working.
I will be adding more test cases in a later change, once this change is
checked in upstream.

Reviewers: reames, dberlin, sanjoy, apilipenko

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D30790

llvm-svn: 298542
2017-03-22 19:27:12 +00:00
Matthias Braun
d6b0e4a6a4 InitializePasses.h: Cleanup; NFC
- Sort alphabetically
- Normalize spaces

llvm-svn: 298181
2017-03-18 05:05:29 +00:00
Daniel Berlin
86a2b633e8 Split NewGVN class into a legacy pass and an impl, instead of a merged class.
llvm-svn: 297576
2017-03-12 04:46:45 +00:00
Jessica Paquette
f1e9ef68dc [Outliner] Fixed Asan bot failure in r296418
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.

llvm-svn: 297081
2017-03-06 21:31:18 +00:00
Nemanja Ivanovic
ec52f511b1 Improve scheduling with branch coalescing
This patch adds a MachineSSA pass that coalesces blocks that branch
on the same condition.

Committing on behalf of Lei Huang.

Differential Revision: https://reviews.llvm.org/D28249

llvm-svn: 296670
2017-03-01 20:29:34 +00:00
Matthias Braun
174ca3760f Revert "Add MIR-level outlining pass"
Revert Machine Outliner for now, as it breaks the asan bot.

This reverts commit r296418.

llvm-svn: 296426
2017-02-28 02:24:30 +00:00
Matthias Braun
00b30110fb Add MIR-level outlining pass
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html

The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.

This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.

The outliner is run like so:

clang -mno-red-zone -mllvm -enable-machine-outliner file.c

Patch by Jessica Paquette<jpaquette@apple.com>!

rdar://29166825

Differential Revision: https://reviews.llvm.org/D26872

llvm-svn: 296418
2017-02-28 00:33:32 +00:00
Adam Nemet
337f461009 Add new pass LazyMachineBlockFrequencyInfo
And use it in MachineOptimizationRemarkEmitter.  A test will follow on top of
Justin's changes to enable MachineORE in AsmPrinter.

The approach is similar to the IR-level pass.  It's a bit simpler because BPI
is immutable at the Machine level so we don't need to make that lazy.

Because of this, a new function mapping is introduced (BPIPassTrait::getBPI).
This function extracts BPI from the pass.  In case of the lazy pass, this is
when the calculation of the BFI occurs.  For Machine-level, this is the
identity function.

Differential Revision: https://reviews.llvm.org/D29836

llvm-svn: 295072
2017-02-14 17:21:09 +00:00
Daniel Berlin
82936d5ba3 Add PredicateInfo utility and printing pass
Summary:
This patch adds a utility to build extended SSA (see "ABCD: eliminating
array bounds checks on demand"), and an intrinsic to support it. This
is then used to get functionality equivalent to propagateEquality in
GVN, in NewGVN (without having to replace instructions as we go). It
would work similarly in SCCP or other passes. This has been talked
about a few times, so i built a real implementation and tried to
productionize it.

Copies are inserted for operands used in assumes and conditional
branches that are based on comparisons (see below for more)

Every use affected by the predicate is renamed to the appropriate
intrinsic result.

E.g.
%cmp = icmp eq i32 %x, 50
br i1 %cmp, label %true, label %false
true:
ret i32 %x
false:
ret i32 1

will become

%cmp = icmp eq i32, %x, 50
br i1 %cmp, label %true, label %false
true:
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %cmp = icmp eq i32 %x, 50 }
%x.0 = call @llvm.ssa_copy.i32(i32 %x)
ret i32 %x.0
false:
ret i23 1

(you can use -print-predicateinfo to get an annotated-with-predicateinfo dump)

This enables us to easily determine what operations are affected by a
given predicate, and how operations affected by a chain of
predicates.

Reviewers: davide, sanjoy

Subscribers: mgorny, llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D29519

Update for review comments

Fix a bug Nuno noticed where we are giving information about and/or on edges where the info is not useful and easy to use wrong

Update for review comments

llvm-svn: 294351
2017-02-07 21:10:46 +00:00
Nirav Dave
61036c7be7 [X86] Implement -mfentry
Summary: Insert calls to __fentry__ at function entry.

Reviewers: hfinkel, craig.topper

Subscribers: mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D28000

llvm-svn: 293648
2017-01-31 17:00:27 +00:00
Matt Arsenault
a92f7a0b6a NVPTX: Move InferAddressSpaces to generic code
llvm-svn: 293579
2017-01-31 01:10:58 +00:00
Adam Nemet
eb46bca148 New OptimizationRemarkEmitter pass for MIR
This allows MIR passes to emit optimization remarks with the same level
of functionality that is available to IR passes.

It also hooks up the greedy register allocator to report spills.  This
allows for interesting use cases like increasing interleaving on a loop
until spilling of registers is observed.

I still need to experiment whether reporting every spill scales but this
demonstrates for now that the functionality works from llc
using -pass-remarks*=<pass>.

Differential Revision: https://reviews.llvm.org/D29004

llvm-svn: 293110
2017-01-25 23:20:33 +00:00
Artur Pilipenko
c5d63dfc6a [Guards] Introduce loop-predication pass
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert

  for (i = 0; i < n; i++) {
    guard(i < len);
    ...
  }

to

  for (i = 0; i < n; i++) {
    guard(n - 1 < len);
    ...
  }

After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:

  if (n - 1 < len)
    for (i = 0; i < n; i++) {
      ...
    } 
  else
    deoptimize

This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).

Reviewed By: sanjoy

Differential Revision: https://reviews.llvm.org/D29034

llvm-svn: 293064
2017-01-25 16:00:44 +00:00
Davide Italiano
fc1a80111a [PM] Remove vestiges of NoAA. NFCI.
llvm-svn: 290496
2016-12-24 16:14:05 +00:00
Davide Italiano
bd0298b1e1 [GVN] Initial check-in of a new global value numbering algorithm.
The code have been developed by Daniel Berlin over the years, and
the new implementation goal is that of addressing shortcomings of
the current GVN infrastructure, i.e. long compile time for large
testcases, lack of phi predication, no load/store value numbering
etc...

The current code just implements the "core" GVN algorithm, although
other pieces (load coercion, phi handling, predicate system) are
already implemented in a branch out of tree. Once the core is stable,
we'll start adding pieces on top of the base framework.
The test currently living in test/Transform/NewGVN are a copy
of the ones in GVN, with proper `XFAIL` (missing features in NewGVN).
A flag will be added in a future commit to enable NewGVN, so that
interested parties can exercise this code easily.

Differential Revision:  https://reviews.llvm.org/D26224

llvm-svn: 290346
2016-12-22 16:03:48 +00:00
Daniel Jasper
162ffcacd6 Revert @llvm.assume with operator bundles (r289755-r289757)
This creates non-linear behavior in the inliner (see more details in
r289755's commit thread).

llvm-svn: 290086
2016-12-19 08:22:17 +00:00
Peter Collingbourne
dec168cd58 IPO: Introduce ThinLTOBitcodeWriter pass.
This pass prepares a module containing type metadata for ThinLTO by splitting
it into regular and thin LTO parts if possible, and writing both parts to
a multi-module bitcode file. Modules that do not contain type metadata are
written unmodified as a single module.

All globals with type metadata are added to the regular LTO module, and
the rest are added to the thin LTO module.

Differential Revision: https://reviews.llvm.org/D27324

llvm-svn: 289899
2016-12-16 00:26:30 +00:00
Hal Finkel
f224db75d2 Remove the AssumptionCache
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...

llvm-svn: 289756
2016-12-15 03:02:15 +00:00
Peter Collingbourne
b981e1c7e5 Introduce GlobalSplit pass.
This pass splits globals into elements using inrange annotations on
getelementptr indices.

Differential Revision: https://reviews.llvm.org/D22295

llvm-svn: 287178
2016-11-16 23:40:26 +00:00
Tom Stellard
b2bb468ce3 RegAllocGreedy: Properly initialize this pass, so that -run-pass will work
Reviewers: qcolombet, MatzeB

Subscribers: wdng, llvm-commits

Differential Revision: https://reviews.llvm.org/D26572

llvm-svn: 286895
2016-11-14 21:50:13 +00:00
Igor Laevsky
1777237add [LCSSA] Perform LCSSA verification only for the current loop nest.
Now LPPassManager will run LCSSA verification only for the top-level loop
which was processed on the current iteration.

Differential Revision: https://reviews.llvm.org/D25873

llvm-svn: 285394
2016-10-28 12:57:20 +00:00
Dehao Chen
ecb41605f5 Add Loop Sink pass to reverse the LICM based of basic block frequency.
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.

Reviewers: hfinkel, davidxl, chandlerc

Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D22778

llvm-svn: 285308
2016-10-27 16:30:08 +00:00
Michael Ilseman
eba5480140 Add -strip-nonlinetable-debuginfo capability
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.

The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches.  For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.

The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.

Thanks to Adrian Prantl for stewarding this patch!

llvm-svn: 285094
2016-10-25 18:44:13 +00:00
Anna Thomas
0e0d440281 [StripGCRelocates] New pass to remove gc.relocates added by RS4GC
Summary:
Utility pass to remove gc.relocates created by rewrite statepoints for GC.
With respect to safepoint verification, the IR generated would be incorrect, and cannot run
as such.

This would be a single transformation on the final optimized IR.
The benefit of the pass is for easy analysis when the IRs are 'polluted' by too
many gc.relocates.
Added tests.

test run: All RS4GC tests with -verify option. Local downstream tests on large
IR files. This also works when the pointer being gc.relocated is another
gc.relocate.

Reviewers: sanjoy, reames

Subscribers: beanz, mgorny, llvm-commits

Differential Revision: https://reviews.llvm.org/D25096

llvm-svn: 284855
2016-10-21 18:43:16 +00:00
Rong Xu
40080ca01c Conditionally eliminate library calls where the result value is not used
Summary:
This pass shrink-wraps a condition to some library calls where the call
result is not used. For example:
   sqrt(val);
 is transformed to
   if (val < 0)
     sqrt(val);
Even if the result of library call is not being used, the compiler cannot
safely delete the call because the function can set errno on error
conditions.
Note in many functions, the error condition solely depends on the incoming
parameter. In this optimization, we can generate the condition can lead to
the errno to shrink-wrap the call. Since the chances of hitting the error
condition is low, the runtime call is effectively eliminated.

These partially dead calls are usually results of C++ abstraction penalty
exposed by inlining. This optimization hits 108 times in 19 C/C++ programs
in SPEC2006.

Reviewers: hfinkel, mehdi_amini, davidxl

Subscribers: modocache, mgorny, mehdi_amini, xur, llvm-commits, beanz

Differential Revision: https://reviews.llvm.org/D24414

llvm-svn: 284542
2016-10-18 21:36:27 +00:00
Tim Northover
dc91ae935f GlobalISel: rename legalizer components to match others.
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.

The only functional change is the name of a couple of command-line options.

llvm-svn: 284287
2016-10-14 22:18:18 +00:00
Michael Ilseman
65a382e8fc Revert "Add -strip-nonlinetable-debuginfo capability"
This reverts commit r283473.

Reverted until review is completed.

llvm-svn: 283478
2016-10-06 18:30:26 +00:00
Michael Ilseman
ae58e6368d Add -strip-nonlinetable-debuginfo capability
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.

The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches.  For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.

The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.

llvm-svn: 283473
2016-10-06 17:58:38 +00:00
Matt Arsenault
cfe01e963c Move AArch64BranchRelaxation to generic code
llvm-svn: 283459
2016-10-06 15:38:53 +00:00
Mehdi Amini
21a9844262 Rename NameAnonFunctions to NameAnonGlobals to match what it is doing (NFC)
llvm-svn: 281745
2016-09-16 16:56:30 +00:00
Sriraman Tallam
0bea49c555 [PM] Port CFGViewer and CFGPrinter to the new Pass Manager
Differential Revision: https://reviews.llvm.org/D24592

llvm-svn: 281640
2016-09-15 18:35:27 +00:00
Hal Finkel
d3039d9a41 Add a counter-function insertion pass
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.

Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.

Differential Revision: https://reviews.llvm.org/D22825

llvm-svn: 280347
2016-09-01 09:42:39 +00:00
Geoff Berry
4a45626e2f [EarlyCSE] Optionally use MemorySSA. NFC.
Summary:
Use MemorySSA, if requested, to do less conservative memory dependency
checking.

This change doesn't enable the MemorySSA enhanced EarlyCSE in the
default pipelines, so should be NFC.

Reviewers: dberlin, sanjoy, reames, majnemer

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D19821

llvm-svn: 280279
2016-08-31 19:24:10 +00:00
Quentin Colombet
1636e7c63b [GlobalISel] Add a fallback path to SDISel.
When global-isel fails on a MachineFunction MF, MF will be cleaned up
and given to SDISel.
Thanks to this fallback, we can already perform correctness test even if
we support only a small portion of the functions in a test.

llvm-svn: 279891
2016-08-27 00:18:31 +00:00
Chandler Carruth
90665f11d7 [PM] Port the always inliner to the new pass manager in a much more
minimal and boring form than the old pass manager's version.

This pass does the very minimal amount of work necessary to inline
functions declared as always-inline. It doesn't support a wide array of
things that the legacy pass manager did support, but is alse ... about
20 lines of code. So it has that going for it. Notably things this
doesn't support:

- Array alloca merging
  - To support the above, bottom-up inlining with careful history
    tracking and call graph updates
- DCE of the functions that become dead after this inlining.
- Inlining through call instructions with the always_inline attribute.
  Instead, it focuses on inlining functions with that attribute.

The first I've omitted because I'm hoping to just turn it off for the
primary pass manager. If that doesn't pan out, I can add it here but it
will be reasonably expensive to do so.

The second should really be handled by running global-dce after the
inliner. I don't want to re-implement the non-trivial logic necessary to
do comdat-correct DCE of functions. This means the -O0 pipeline will
have to be at least 'always-inline,global-dce', but that seems
reasonable to me. If others are seriously worried about this I'd like to
hear about it and understand why. Again, this is all solveable by
factoring that logic into a utility and calling it here, but I'd like to
wait to do that until there is a clear reason why the existing
pass-based factoring won't work.

The final point is a serious one. I can fairly easily add support for
this, but it seems both costly and a confusing construct for the use
case of the always inliner running at -O0. This attribute can of course
still impact the normal inliner easily (although I find that
a questionable re-use of the same attribute). I've started a discussion
to sort out what semantics we want here and based on that can figure out
if it makes sense ta have this complexity at O0 or not.

One other advantage of this design is that it should be quite a bit
faster due to checking for whether the function is a viable candidate
for inlining exactly once per function instead of doing it for each call
site.

Anyways, hopefully a reasonable starting point for this pass.

Differential Revision: https://reviews.llvm.org/D23299

llvm-svn: 278896
2016-08-17 02:56:20 +00:00
Teresa Johnson
8d0046afe0 [PM] Port LoopDataPrefetch to new pass manager
Summary:
Refactor the existing support into a LoopDataPrefetch implementation
class and a LoopDataPrefetchLegacyPass class that invokes it.
Add a new LoopDataPrefetchPass for the new pass manager that utilizes
the LoopDataPrefetch implementation class.

Reviewers: mehdi_amini

Subscribers: sanjoy, mzolotukhin, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D23483

llvm-svn: 278591
2016-08-13 04:11:27 +00:00
Michael Kuperstein
ff7325ed4c [PM] Port LowerInvoke to the new pass manager
llvm-svn: 278531
2016-08-12 17:28:27 +00:00
Teresa Johnson
69629c2314 [PM] Port NameAnonFunction pass to new pass manager
Summary:
Port the NameAnonFunction pass and add a test.

Depends on D23439.

Reviewers: mehdi_amini

Subscribers: llvm-commits, mehdi_amini

Differential Revision: https://reviews.llvm.org/D23440

llvm-svn: 278509
2016-08-12 14:03:36 +00:00
Michael Kuperstein
3948eae2ef [PM] Port SpeculativeExecution to the new PM
Differential Revision: https://reviews.llvm.org/D23033

llvm-svn: 277393
2016-08-01 21:48:33 +00:00
Brendon Cahoon
e37295579e MachinePipeliner pass that implements Swing Modulo Scheduling
Software pipelining is an optimization for improving ILP by
overlapping loop iterations. Swing Modulo Scheduling (SMS) is
an implementation of software pipelining that attempts to
reduce register pressure and generate efficient pipelines with
a low compile-time cost.

This implementaion of SMS is a target-independent back-end pass.
When enabled, the pass should run just prior to the register
allocation pass, while the machine IR is in SSA form. If the pass
is successful, then the original loop is replaced by the optimized
loop. The optimized loop contains one or more prolog blocks, the
pipelined kernel, and one or more epilog blocks.

This pass is enabled for Hexagon only. To enable for other targets,
a couple of target specific hooks must be implemented, and the
pass needs to be called from the target's TargetMachine
implementation.

Differential Review: http://reviews.llvm.org/D16829

llvm-svn: 277169
2016-07-29 16:44:44 +00:00
Adam Nemet
9449a00cc1 [BPI] Add new LazyBPI analysis
Summary:
The motivation is the same as in D22141: In order to add the hotness
attribute to optimization remarks we need BFI to be available in all
passes that emit optimization remarks.  BFI depends on BPI so unless we
make this lazy as well we would still compute BPI unconditionally.

The solution is to use the new LazyBPI pass in LazyBFI and only compute
BPI when computation of BFI is requested by the client.

I extended the laziness test using a LoopDistribute test to also cover
BPI.

Reviewers: hfinkel, davidxl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D22835

llvm-svn: 277083
2016-07-28 23:31:12 +00:00
Michael Kuperstein
9f5bccd412 [PM] Port LowerGuardIntrinsic to the new PM.
llvm-svn: 277057
2016-07-28 22:08:41 +00:00
David Majnemer
618a29cbe1 [coroutines] Part 3 of N: Adding Boilerplate for Coroutine Passes
This adds boilerplate code for all coroutine passes,
the passes are no-ops for now.
Also, a small test has been added to verify that passes execute in
the expected order or not at all if coroutine support is disabled.

Patch by Gor Nishanov!

Differential Revision: https://reviews.llvm.org/D22847

llvm-svn: 277033
2016-07-28 21:04:31 +00:00
Ahmed Bougacha
fdc59ed6fb [GlobalISel] Introduce an instruction selector.
And implement it for AArch64, supporting x/w ADD/OR.

Differential Revision: https://reviews.llvm.org/D22373

llvm-svn: 276875
2016-07-27 14:31:55 +00:00
Michael Kuperstein
e46ec47350 [PM] Port SymbolRewriter to the new PM
Differential Revision: https://reviews.llvm.org/D22703

llvm-svn: 276687
2016-07-25 20:52:00 +00:00
Tim Northover
e35b03e144 GlobalISel: implement legalization pass, with just one transformation.
This adds the actual MachineLegalizeHelper to do the work and a trivial pass
wrapper that legalizes all instructions in a MachineFunction. Currently the
only transformation supported is splitting up a vector G_ADD into one acting on
smaller vectors.

llvm-svn: 276461
2016-07-22 20:03:43 +00:00
Wei Mi
6b0c2bfc2b [PM] Port NaryReassociate to the new PM
Differential Revision: https://reviews.llvm.org/D22648

llvm-svn: 276349
2016-07-21 22:28:52 +00:00
Teresa Johnson
ef461cc7ce [PM] Port FunctionImport Pass to new PM
Summary: Port FunctionImport Pass to new PM.

Reviewers: mehdi_amini, davide

Subscribers: davidxl, llvm-commits

Differential Revision: https://reviews.llvm.org/D22475

llvm-svn: 275916
2016-07-18 21:22:24 +00:00
Adam Nemet
40da722c35 [LoopDist] Port to new PM
Summary:
The direct motivation for the port is to ensure that the OptRemarkEmitter
tests work with the new PM.

This remains a function pass because we not only create multiple loops
but could also version the original loop.

In the test I need to invoke opt
with -passes='require<aa>,loop-distribute'.  LoopDistribute does not
directly depend on AA however LAA does.  LAA uses getCachedResult so
I *think* we need manually pull in 'aa'.

Reviewers: davidxl, silvas

Subscribers: sanjoy, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D22437

llvm-svn: 275811
2016-07-18 16:29:27 +00:00
Adam Nemet
3e5f3565d1 [OptRemarkEmitter] Port to new PM
Summary:
The main goal is to able to start using the new OptRemarkEmitter
analysis from the LoopVectorizer.  Since the vectorizer was recently
converted to the new PM, it makes sense to convert this analysis as
well.

This pass is currently tested through the LoopDistribution pass, so I am
also porting LoopDistribution to get coverage for this analysis with the
new PM.

Reviewers: davidxl, silvas

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D22436

llvm-svn: 275810
2016-07-18 16:29:21 +00:00
Dehao Chen
84b1505453 [PM] Convert IVUsers analysis to new pass manager.
Summary: Convert IVUsers analysis to new pass manager.

Reviewers: davidxl, silvas

Subscribers: junbuml, sanjoy, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D22434

llvm-svn: 275698
2016-07-16 22:51:33 +00:00
Adam Nemet
cb89dd6834 [OptRemark,LDist] RFC: Add hotness attribute
Summary:
This is the first set of changes implementing the RFC from
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334

This is a cross-sectional patch; rather than implementing the hotness
attribute for all optimization remarks and all passes in a patch set, it
implements it for the 'missed-optimization' remark for Loop
Distribution.  My goal is to shake out the design issues before scaling
it up to other types and passes.

Hotness is computed as an integer as the multiplication of the block
frequency with the function entry count.  It's only printed in opt
currently since clang prints the diagnostic fields directly.  E.g.:

  remark: /tmp/t.c:3:3: loop not distributed: use -Rpass-analysis=loop-distribute for more info (hotness: 300)

A new API added is similar to emitOptimizationRemarkMissed.  The
difference is that it additionally takes a code region that the
diagnostic corresponds to.  From this, hotness is computed using BFI.
The new API is exposed via an analysis pass so that it can be made
dependent on LazyBFI.  (Thanks to Hal for the analysis pass idea.)

This feature can all be enabled by setDiagnosticHotnessRequested in the
LLVM context.  If this is off, LazyBFI is not calculated (D22141) so
there should be no overhead.

A new command-line option is added to turn this on in opt.

My plan is to switch all user of emitOptimizationRemark* to use this
module instead.

Reviewers: hfinkel

Subscribers: rcox2, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D21771

llvm-svn: 275583
2016-07-15 17:23:20 +00:00
Dehao Chen
7ad979406b [PM] Convert LoopInstSimplify Pass to new PM
Summary: Convert LoopInstSimplify to new PM. Unfortunately there is no exisiting unittest for this pass.

Reviewers: davidxl, silvas

Subscribers: silvas, llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D22280

llvm-svn: 275576
2016-07-15 16:42:11 +00:00
Sebastian Pop
b636a525d4 code hoisting pass based on GVN
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.

Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.

Differential Revision: http://reviews.llvm.org/D19338

llvm-svn: 275561
2016-07-15 13:45:20 +00:00
Jun Bum Lim
11a2b91ee2 [PM] Port Dead Loop Deletion Pass to the new PM
Summary: Port Dead Loop Deletion Pass to the new pass manager.

Reviewers: silvas, davide

Subscribers: llvm-commits, sanjoy, mcrosier

Differential Revision: https://reviews.llvm.org/D21483

llvm-svn: 275453
2016-07-14 18:28:29 +00:00
Nico Weber
e9dcd55ff0 Revert r275401, it caused PR28551.
llvm-svn: 275420
2016-07-14 14:41:25 +00:00
Sebastian Pop
f51ad9a239 code hoisting pass based on GVN
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.

Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.

Differential Revision: http://reviews.llvm.org/D19338

llvm-svn: 275401
2016-07-14 12:18:53 +00:00
Dean Michael Berris
b3cb9bd89d XRay: Add entry and exit sleds
Summary:
In this patch we implement the following parts of XRay:

- Supporting a function attribute named 'function-instrument' which currently only supports 'xray-always'. We should be able to use this attribute for other instrumentation approaches.
- Supporting a function attribute named 'xray-instruction-threshold' used to determine whether a function is instrumented with a minimum number of instructions (IR instruction counts).
- X86-specific nop sleds as described in the white paper.
- A machine function pass that adds the different instrumentation marker instructions at a very late stage.
- A way of identifying which return opcode is considered "normal" for each architecture.

There are some caveats here:

1) We don't handle PATCHABLE_RET in platforms other than x86_64 yet -- this means if IR used PATCHABLE_RET directly instead of a normal ret, instruction lowering for that platform might do the wrong thing. We think this should be handled at instruction selection time to by default be unpacked for platforms where XRay is not availble yet.

2) The generated section for X86 is different from what is described from the white paper for the sole reason that LLVM allows us to do this neatly. We're taking the opportunity to deviate from the white paper from this perspective to allow us to get richer information from the runtime library.

Reviewers: sanjoy, eugenis, kcc, pcc, echristo, rnk

Subscribers: niravd, majnemer, atrick, rnk, emaste, bmakam, mcrosier, mehdi_amini, llvm-commits

Differential Revision: http://reviews.llvm.org/D19904

llvm-svn: 275367
2016-07-14 04:06:33 +00:00
Adam Nemet
071e00e973 [BFI] Add new LazyBFI analysis pass
Summary:
This is necessary for D21771.  In order to add the hotness attribute to
optimization remarks we need BFI to be available in all passes that emit
optimization remarks.

However we don't want to pay for computing BFI unless the hotness
attribute is requested.

This is achieved by making BFI lazy at the very high-level through a new
analysis pass -- BFI is not calculated unless requested.

I am adding a test to check the laziness under D21771 where the first
user of the analysis is added.

Reviewers: hfinkel, dexonsmith, davidxl

Subscribers: davidxl, dexonsmith, llvm-commits

Differential Revision: http://reviews.llvm.org/D22141

llvm-svn: 275250
2016-07-13 05:01:48 +00:00
Dehao Chen
9b4dc6d522 New pass manager for LICM.
Summary: Port LICM to the new pass manager.

Reviewers: davidxl, silvas

Subscribers: krasin, vitalybuka, silvas, davide, sanjoy, llvm-commits, mehdi_amini

Differential Revision: http://reviews.llvm.org/D21772

llvm-svn: 275222
2016-07-12 22:37:48 +00:00
Dehao Chen
c181c867aa [PM] Port LoopIdiomRecognize Pass to new PM
Summary: Port LoopIdiomRecognize Pass to new PM

Reviewers: davidxl

Subscribers: davide, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D22250

llvm-svn: 275202
2016-07-12 18:45:51 +00:00
Vitaly Buka
d3a08f0254 Revert "New pass manager for LICM."
Summary: This reverts commit r275118.

Subscribers: sanjoy, mehdi_amini

Differential Revision: http://reviews.llvm.org/D22259

llvm-svn: 275156
2016-07-12 06:25:32 +00:00
Dehao Chen
75ac849ab9 New pass manager for LICM.
Summary: Port LICM to the new pass manager.

Reviewers: davidxl, silvas

Subscribers: silvas, davide, sanjoy, llvm-commits, mehdi_amini

Differential Revision: http://reviews.llvm.org/D21772

llvm-svn: 275118
2016-07-11 22:45:24 +00:00
Xinliang David Li
fa55840e59 Rename LoopAccessAnalysis to LoopAccessLegacyAnalysis /NFC
llvm-svn: 274927
2016-07-08 20:55:26 +00:00
Wei Mi
3d33c761b3 [PM] Port UnreachableBlockElim to the new Pass Manager
Differential Revision: http://reviews.llvm.org/D22124

llvm-svn: 274824
2016-07-08 03:32:49 +00:00
Chad Rosier
470696c7ac [MemorySSA] Reinstate the legacy printer and verifier.
Differential Revision: http://reviews.llvm.org/D22058

llvm-svn: 274679
2016-07-06 21:20:47 +00:00
George Burgess IV
9f9488ba33 [CFLAA] Split into Anders+Steens analysis.
StratifiedSets (as implemented) is very fast, but its accuracy is also
limited. If we take a more aggressive andersens-like approach, we can be
way more accurate, but we'll also end up being slower.

So, we've decided to split CFLAA into CFLSteensAA and CFLAndersAA.

Long-term, we want to end up in a place where CFLSteens is queried
first; if it can provide an answer, great (since queries are basically
map lookups). Otherwise, we'll fall back to CFLAnders, BasicAA, etc.

This patch splits everything out so we can try to do something like
that when we get a reasonable CFLAnders implementation.

Patch by Jia Chen.

Differential Revision: http://reviews.llvm.org/D21910

llvm-svn: 274589
2016-07-06 00:26:41 +00:00
Michael Kuperstein
42c218049d [PM] Port ConstantHoisting to the new Pass Manager
Differential Revision: http://reviews.llvm.org/D21945

llvm-svn: 274411
2016-07-02 00:16:47 +00:00
Duncan P. N. Exon Smith
ffdaac761a Revert "code hoisting pass based on GVN"
This reverts commit r274305, since it breaks self-hosting:
  http://lab.llvm.org:8080/green/job/clang-stage1-configure-RA_build/22349/
  http://lab.llvm.org:8011/builders/clang-x86_64-linux-selfhost-modules/builds/17232

Note that the blamelist on lab.llvm.org:8011 is incorrect.  The previous
build was r274299, but somehow r274305 wasn't included in the blamelist:
  http://lab.llvm.org:8011/builders/clang-x86_64-linux-selfhost-modules

llvm-svn: 274320
2016-07-01 01:51:40 +00:00
Sebastian Pop
a6285be57a code hoisting pass based on GVN
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.

Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.

Differential Revision: http://reviews.llvm.org/D19338

llvm-svn: 274305
2016-07-01 00:24:31 +00:00
Matt Arsenault
1e3982dae5 Add LoadStoreVectorizer pass
This was contributed by Apple, and I've been working on
minimal cleanups and generalizing it.

llvm-svn: 274293
2016-06-30 23:11:38 +00:00
Easwaran Raman
cec1646e7a [PM] Port PartialInlining to the new PM
Differential revision: http://reviews.llvm.org/D21699

llvm-svn: 273894
2016-06-27 16:50:18 +00:00
Michael Kuperstein
d6e7bd4a04 [PM] Port float2int to the new pass manager
Differential Revision: http://reviews.llvm.org/D21704

llvm-svn: 273747
2016-06-24 23:32:02 +00:00
Peter Collingbourne
e3f12b0e68 IR: New representation for CFI and virtual call optimization pass metadata.
The bitset metadata currently used in LLVM has a few problems:

1. It has the wrong name. The name "bitset" refers to an implementation
   detail of one use of the metadata (i.e. its original use case, CFI).
   This makes it harder to understand, as the name makes no sense in the
   context of virtual call optimization.

2. It is represented using a global named metadata node, rather than
   being directly associated with a global. This makes it harder to
   manipulate the metadata when rebuilding global variables, summarise it
   as part of ThinLTO and drop unused metadata when associated globals are
   dropped. For this reason, CFI does not currently work correctly when
   both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
   globals, and fails to associate metadata with the rebuilt globals. As I
   understand it, the same problem could also affect ASan, which rebuilds
   globals with a red zone.

This patch solves both of those problems in the following way:

1. Rename the metadata to "type metadata". This new name reflects how
   the metadata is currently being used (i.e. to represent type information
   for CFI and vtable opt). The new name is reflected in the name for the
   associated intrinsic (llvm.type.test) and pass (LowerTypeTests).

2. Attach metadata directly to the globals that it pertains to, rather
   than using the "llvm.bitsets" global metadata node as we are doing now.
   This is done using the newly introduced capability to attach
   metadata to global variables (r271348 and r271358).

See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html

Differential Revision: http://reviews.llvm.org/D21053

llvm-svn: 273729
2016-06-24 21:21:32 +00:00
Michael Kuperstein
2a6a658346 [PM] Port PreISelIntrinsicLowering to the new PM
llvm-svn: 273713
2016-06-24 20:13:42 +00:00
Davide Italiano
af24ebdbb8 [PM] Port MergedLoadStoreMotion to the new pass manager, take two.
This is indeed a much cleaner approach (thanks to Daniel Berlin
for pointing out), and also David/Sean for review.

Differential Revision:  http://reviews.llvm.org/D21454

llvm-svn: 273032
2016-06-17 19:10:09 +00:00
Davide Italiano
f3b1808d94 [PM] Revert the port of MergeLoadStoreMotion to the new pass manager.
Daniel Berlin expressed some real concerns about the port and proposed
and alternative approach. I'll revert this for now while working on a
new patch, which I hope to put up for review shortly. Sorry for the churn.

llvm-svn: 272925
2016-06-16 17:40:53 +00:00
Xinliang David Li
fac5bcea0f [PM] Port Add discriminator pass to new PM
llvm-svn: 272847
2016-06-15 21:51:30 +00:00
David Majnemer
c6df3d773b Remove the ScalarReplAggregates pass
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM.  LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.

Differential Revision: http://reviews.llvm.org/D21316

llvm-svn: 272737
2016-06-15 00:19:09 +00:00