I think PBQP could use RegisterClassInfo, but it didn't fit neatly with
the external interfaces that PBQP uses, so I'll leave that to Lang.
llvm-svn: 133186
BranchProbabilityInfo (expect setEdgeWeight which is not available here).
Branch Weights are kept in MachineBasicBlocks. To turn off this analysis
set -use-mbpi=false.
llvm-svn: 133184
This is intended to support using REG_SEQUENCE SDNode's with type MVT::untyped, and is part of the long road to eliminating some of the hacks we currently use to support register pairs and other strange constraints, particularly on ARM NEON.
llvm-svn: 133178
This virtual function will replace allocation_order_begin/end as the one
to override when implementing custom allocation orders. It is simpler to
have one function return an ArrayRef than having two virtual functions
computing different ends of the same array.
Use getRawAllocationOrder() in place of allocation_order_begin() where
it makes sense, but leave some clients that look like they really want
the filtered allocation orders from RegisterClassInfo.
llvm-svn: 133170
GetDemandBits (which must operate on the vector element type).
Fix the a usage of getZeroExtendInReg which must also be done on scalar types.
llvm-svn: 133052
converted to add x,x if x is a undef. add undef, undef does not guarantee
that the resulting low order bit is zero.
Fixes <rdar://problem/9453156> and <rdar://problem/9487392>.
llvm-svn: 133022
Dan noted that this would work on the case shown on the commit message. I think
the case that was failing was a bb ending with a redundant conditional jump:
...
jne foo
foo:
...
I was unable to find any such case in the tests or in a debug build of clang,
so I will revert this part of the patch and watch the bots.
llvm-svn: 133004
types (with power of two types such as 8,16,32 .. 512).
Fix a bug in the integer promotion of bitcast nodes. Enable integer expanding
only if the target of the conversion is an integer (when the type action is
scalarize).
Add handling to the legalization of vector load/store in cases where the saved
vector is integer-promoted.
llvm-svn: 132985
In particular, don't spill dirty registers only to satisfy a hint. It is
not worth it.
The attached test case provides an example where the fast allocator
would spill a register when other registers are available.
llvm-svn: 132900
Instead of scalarizing, and doing an element-by-element truncat, use vector
truncate.
Add support for scalarization of vectors: i8 -> <1 x i1> (from Duncan's
testcase).
llvm-svn: 132892
we try to branch to them.
Before we were creating successor lists with duplicated entries. Fixing that
found a bug in isBlockOnlyReachableByFallthrough that would causes it to
return the wrong answer for
-----------
...
jne foo
jmp bar
foo:
----------
llvm-svn: 132882
and definitions when emitting global variables. This was causing global
declarations to be emitted as if they were definitions.
Fixes <rdar://problem/9429892>.
llvm-svn: 132825
With this I am able to bootstrap clang with early tail duplication enabled
for any small bb and setting tail-dup-size to a relatively large value(8) to
stress this code.
llvm-svn: 132816
The potential DAGCombine which enforces this more generally messes up some other very fragile patterns, so I'm leaving that alone, at least for now.
llvm-svn: 132809
I've been sitting on this long enough trying to find a test case. I
think the fix should go in now, but I'll keep working on the test case.
llvm-svn: 132701
When local live range splitting creates a live range with the same
number of instructions as the old range, mark it as RS_Local. When such
a range is seen again, require that it be split in a way that reduces
the number of instructions. That guarantees we are making progress while
still being able to perform 3 -> 2+3 splits as required by PR10070.
This also means that the PrevSlot map is no longer needed. This was also
used to estimate new spill weights, but that is no longer necessary
after slotIndexes::insertMachineInstrInMaps() got the extra Late
insertion argument.
llvm-svn: 132697
Only target-dependent hints require callbacks. The RCI allocation order
has CSR aliases last according to their order of appearance in the
getCalleeSavedRegs list. This can depend on the calling convention.
This way, AllocationOrder::next doesn't have to check for reserved
registers, and CSRs are always allocated last, even with weird calling
conventions.
llvm-svn: 132690
The order of registers returned by getCalleeSavedRegs is used to lay out
the fixed stack slots for CSRs. Some targets like their CSRs used from
one end, and some targets want them used from the other end.
When computing an allocation order, simply preserve the relative
ordering of CSRs that the target specifies in its allocation order.
Reordering CSRs would break some targets, ARM in particular.
We still place volatiles before the CSRs, providing slightly better
results with different calling conventions.
llvm-svn: 132680
(only happens when using the -promote-elements option).
The correct legalization order is to first try to promote element. Next, we try
to widen vectors.
llvm-svn: 132648
of reserved registers.
Use RegisterClassInfo in RABasic as well. This slightly changes som
allocation orders because RegisterClassInfo puts CSR aliases last.
llvm-svn: 132581
When compiling a program with lots of small functions like
483.xalancbmk, this makes RAFast 11% faster.
Add some comments to clarify the difference between unallocatable and
reserved registers. It's quite subtle.
The fast register allocator depends on EFLAGS' not being allocatable on
x86. That way it can completely avoid tracking liveness, and it won't
mind when there are multiple uses of a single def.
llvm-svn: 132514
Some register classes are only used for instruction operand constraints.
They should never be used for virtual registers. Previously, those
register classes were given an empty allocation order, but now you can
say 'let isAllocatable=0' in the register class definition.
TableGen calculates if a register is part of any allocatable register
class, and makes that information available in TargetRegisterDesc::inAllocatableClass.
The goal here is to eliminate use cases for overriding allocation_order_*
methods.
llvm-svn: 132508
I was confused whether new uint8_t[] would zero-initialize the returned
array, and it seems that so is gcc-4.0.
This should fix the test failures on darwin 9.
llvm-svn: 132500
Instead, use simpler approach and let DBG_VALUE follow its predecessor instruction. After live debug value analysis pass, all DBG_VALUE instruction are placed at the right place. Thanks Jakob for the hint!
llvm-svn: 132483
register classes.
It provides information for each register class that cannot be
determined statically, like:
- The number of allocatable registers in a class after filtering out the
reserved and invalid registers.
- The preferred allocation order with registers that overlap callee-saved
registers last.
- The last callee-saved register that overlaps a given physical register.
This information usually doesn't change between functions, so it is
reused for compiling multiple functions when possible. The many
possible combinations of reserved and callee saves registers makes it
unfeasible to compute this information statically in TableGen.
Use RegisterClassInfo to count available registers in various heuristics
in SimpleRegisterCoalescing, making the pass run 4% faster.
llvm-svn: 132450
patch we add a flag to enable a new type legalization decision - to promote
integer elements in vectors. Currently, the rest of the codegen does not support
this kind of legalization. This flag will be removed when the transition is
complete.
llvm-svn: 132394
For targets with no itinerary (x86) it is a nop by default. For
targets with issue width already expressed in the itinerary (ARM) it
bypasses a scoreboard check but otherwise does not affect the
schedule. It does make the code more consistent and complete and
allows new targets to specify their issue width in an arbitrary way.
llvm-svn: 132385
turns out that it could cause an infinite loop in some situations. If this code
is triggered and it converts a cleanup into a catchall, but that cleanup was in
already in a cleanup, then the _Unwind_SjLj_Resume could infinite loop. I.e.,
the code doesn't consume the exception object and passes it on to
_Unwind_SjLj_Resume. But _USjLjR expects it to be consumed (since it's landing
at a catchall instead of a cleanup). So it uses the values that are presently
there, which are the values that tell it to jump to the fake landing pad.
<rdar://problem/9508402>
llvm-svn: 132381
When assigned ranges are evicted, they are put in the RS_Evicted stage and are
not allowed to evict anything else. That prevents looping automatically.
When evicting ranges just to get a cheaper register, use only spill weights to
find the possible candidates. Avoid breaking hints for this purpose, it is not
worth it.
Start implementing more complex eviction heuristics, guarded by the temporary
-complex-eviction flag. The initial version permits a heavier range to be
evicted if it doesn't have any uses where the evicting range is live. This makes
it a good candidate for live ranfge splitting.
llvm-svn: 132358
This only affects targets like Mips where branch instructions may kill virtual
registers. Most other targets branch on flag values, so virtual registers are
not involved.
The problem is that MachineBasicBlock::updateTerminator deletes branches and
inserts new ones while LiveVariables keeps a list of pointers to instructions
that kill virtual registers. That list wasn't properly updated in
MBB::SplitCriticalEdge.
llvm-svn: 132298
handler.
At this moment, only GCC-style exceptions are supported. Other kinds
of exceptions, including "traditional" SEH and Microsoft Visual C++ exceptions,
need more work--and an compiler exception model that isn't specific to
GCC-style exceptions!
In particular, I imagine that it would be possible to mix "traditional" SEH
with GCC-style EH or Microsoft C++ EH. Currently LLVM has no way (beyond some
target-specific defaults and whole-module compiler switches) of knowing which
scheme to use when.
llvm-svn: 132283
This patch does not change the behavior of the type legalizer. The codegen
produces the same code.
This infrastructural change is needed in order to enable complex decisions
for vector types (needed by the vector-select patch).
llvm-svn: 132263
transformed by the inliner into a branch to the enclosing landing pad
(when inlined through an invoke). If not so optimized, it is lowered
DWARF EH preparation into a call to _Unwind_Resume (or _Unwind_SjLj_Resume
as appropriate). Its chief advantage is that it takes both the
exception value and the selector value as arguments, meaning that there
is zero effort in recovering these; however, the frontend is required
to pass these down, which is not actually particularly difficult.
Also document the behavior of landing pads a bit better, and make it
clearer that it's okay that personality functions don't always land at
landing pads. This is just a fact of life. Don't write optimizations that
rely on pushing things over an unwind edge.
llvm-svn: 132253
Delete the Kill and Def markers in BlockInfo. They are no longer
necessary when BlockInfo describes a continuous live range.
This only affects the relatively rare kind of basic block where a live
range looks like this:
|---x o---|
Now live range splitting can pretend that it is looking at two blocks:
|---x
o---|
This allows the code to be simplified a bit.
llvm-svn: 132245
It is important that this function returns the same number of live blocks as
countLiveBlocks(CurLI) because live range splitting uses the number of live
blocks to ensure it is making progress.
This is in preparation of supporting duplicate UseBlock entries for basic blocks
that have a virtual register live-in and live-out, but not live-though.
llvm-svn: 132244
There was no way to check if a given register/mode pair was valid. We now return
an error code (-2) instead of asserting. If anyone thinks that an assert
at this point is really needed, we can autogen a hasValidDwarfRegNum instead.
llvm-svn: 132236
subregisters:
When a value is in a subregister, at least report the location as being
the superregister. We should extend the .td files to encode the bit
range so that we can produce a DW_OP_bit_piece.
llvm-svn: 132224
This doesn't change functionality (much), but it allows for a more fine-grained
eviction policy. The current policy only compares spill weights, and that is not
always the best thing to do. Spill weights are designed to serve linear scan,
and they don't consider live range splitting.
Add a mechanism so canEvict() can request that a live range be evicted and
split/spilled. This is to avoid infinite eviction loops.
llvm-svn: 132101
The practical effects here are that x86-64 fast-isel can now handle trunc from i8 to i1, and ARM fast-isel can handle many more constructs involving integers narrower than 32 bits (including loads, stores, and many integer casts).
rdar://9437928 .
llvm-svn: 132099
non-zero.
- Teach X86 cmov optimization to eliminate the cmov from ctlz, cttz extension
when the source of X86ISD::BSR / X86ISD::BSF is proven to be non-zero.
rdar://9490949
llvm-svn: 131948