This wasn't failing for me with clang as the compiler. I think GCC may
disagree with clang about whether a friend declaration introduces a
declaration in the enclosing namespace (or something).
Example error:
/home/uweigand/sandbox/buildbot/clang-s390x-linux/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp:950:77: error: ‘llvm::raw_ostream& llvm::slpvectorizer::operator<<(llvm::raw_ostream&, const llvm::slpvectorizer::BoUpSLP::ScheduleData&)’ should have been declared inside ‘llvm::slpvectorizer’
const BoUpSLP::ScheduleData &SD) {
^
llvm-svn: 272767
This uses the "runImpl" approach to share code with the old PM.
Porting to the new PM meant abandoning the anonymous namespace enclosing
most of SLPVectorizer.cpp which is a bit of a bummer (but not a big deal
compared to having to pull the pass class into a header which the new PM
requires since it calls the constructor directly).
llvm-svn: 272766
... instead of explicitly conditioning on NDEBUG. Also use an easier to
read conditional expression.
(Addresses post-commit review from David Blaikie.)
llvm-svn: 272762
Summary:
This fixes two related bugs. First, the generic optimization passes
unfortunately generate negative constant offsets but the hardware treats
SOffset as an unsigned value.
Second, there is a hardware bug on SI and CI, where address clamping in MUBUF
instructions does not work correctly when SOffset is larger than the buffer
size. This patch works around this bug by never using SOffset.
An alternative workaround would be to do the clamping manually when SOffset
is too large, but generating the required code sequence during instruction
selection would be rather involved, and in any case the resulting code would
probably be worse.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=96360
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21326
llvm-svn: 272761
Summary:
... when the offset is not statically known.
Prioritize addresses relative to the stack pointer in the stackmap, but
fallback gracefully to other modes of addressing if the offset to the
stack pointer is not a known constant.
Patch by Oscar Blumberg!
Reviewers: sanjoy
Subscribers: llvm-commits, majnemer, rnk, sanjoy, thanm
Differential Revision: http://reviews.llvm.org/D21259
llvm-svn: 272756
Use Optional<T> to denote the absence of a solution, not
SCEVCouldNotCompute. This makes the usage of SolveQuadraticEquation
somewhat simpler.
llvm-svn: 272752
Summary:
We we have an MCConstantExpr, we can encode it directly into the instruction
instead of emitting fixups.
Reviewers: artem.tamazov, vpykhtin, SamWot, nhaustov, arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21236
Change-Id: I88b3edf288d48e65c5d705fc4850d281f8e36948
llvm-svn: 272750
Document the new parameter and threshod computation
model. Also fix a bug when the threshold parameter
is set to be different from the default.
llvm-svn: 272749
Summary:
We can now reference symbols directly in operands, like this:
s_mov_b32 s0, global
Reviewers: artem.tamazov, vpykhtin, SamWot, nhaustov
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21038
llvm-svn: 272748
The ``FuzzerMutate.ShuffleBytes2`` unit test was failing on
OSX due to the implementation of ``std::random_shuffle()``
being different between libcxx and libstdc++.
@kcc has decided (see http://reviews.llvm.org/D21218) it is acceptable
for there to be different mutation behavior on different platforms so
this commit just adjusts the test to perform the minimum number of
iterations (that is a power of 2) to see all the mutations the unit test
is looking for.
Differential Revision: http://reviews.llvm.org/D21359
llvm-svn: 272743
r272715 broke libcxx because it did not correctly handle cases where the
last iteration of one IV is the second-to-last iteration of another.
Original commit message:
Vectorizing loops with "escaping" IVs has been disabled since r190790, due to
PR17179. This re-enables it, with support for external use of both
"post-increment" (last iteration) and "pre-increment" (second-to-last iteration)
IVs.
llvm-svn: 272742
We do not support splitting cleanuppad or catchswitches. This is
problematic for passes which assume that a loop is in loop simplify
form (the loop would have a dedicated exit block instead of sharing it).
While it isn't great that we don't support this for cleanups, we still
cannot make loop-simplify form an assertable precondition because
indirectbr will also disable these sorts of CFG cleanups.
This fixes PR28132.
llvm-svn: 272739
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM. LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.
Differential Revision: http://reviews.llvm.org/D21316
llvm-svn: 272737
Summary: With runtime profile, we have more confidence in branch probability, thus during basic block layout, we set a lower hot prob threshold so that blocks can be layouted optimally.
Reviewers: djasper, davidxl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20991
llvm-svn: 272729
Summary: The current naming not only doesn't convey the meaning of what this does, but worse, it convey the wrong meaning. This was a major source of confusion understanding the code, so I'm applying the boy scout rule here and making it better after I leave.
Reviewers: void, bkramer, whitequark
Differential Revision: http://reviews.llvm.org/D21264
llvm-svn: 272725
Vectorizing loops with "escaping" IVs has been disabled since r190790, due to
PR17179. This re-enables it, with support for external use of both
"post-increment" (last iteration) and "pre-increment" (second-to-last iteration)
IVs.
Differential Revision: http://reviews.llvm.org/D21048
llvm-svn: 272715
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
Summary:
[libFuzzer] Enable afl_driver to append stderr to a user specified file.
Append stderr of afl_driver to the file specified by the environmental variable
AFL_DRIVER_STDERR_DUPLICATE_FILENAME if it is set. This lets users see outputs
on crashes without rerunning crashing test cases (which won't work for crashes
that are difficult to reproduce). Before this patch, stderr would only be sent to afl-fuzz
and users would have no way of seeing it.
Reviewers: llvm-commits, aizatsky, kcc, vitalybuka
Subscribers: vitalybuka
Differential Revision: http://reviews.llvm.org/D21194
llvm-svn: 272706
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.
This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.
Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.
Reviewers: arsenm, kzhuravl
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: http://reviews.llvm.org/D21154
llvm-svn: 272705
This change teaches llvm::isGuaranteedToTransferExecutionToSuccessor
that calls to @llvm.assume always terminate. Most other relevant
intrinsics should be covered by the "CS.onlyReadsMemory() ||
CS.onlyAccessesArgMemory()" bit but we were missing @llvm.assumes
because we state that it clobbers memory.
Added an LICM test case, but this change is not specific to LICM.
llvm-svn: 272703
Summary:
Split NumInstrDups statistic into separate added/removed counts to avoid
negative stat being printed as unsigned.
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D21335
llvm-svn: 272700
On OSX this test sometimes fails due to the
``LLVMFuzzer-FullCoverageSetTest-TracePC`` program going over the
default 2GiB memory limit. This shouldn't be happening and needs
investigating. For now just disable the test so we can set up an
OSX buildbot.
Differential Revision: http://reviews.llvm.org/D21319
llvm-svn: 272696
For <N x i32> type mul, pmuludq will be used for targets without SSE41, which
often introduces many extra pack and unpack instructions in vectorized loop
body because pmuludq generates <N/2 x i64> type value. However when the operands
of <N x i32> mul are extended from smaller size values like i8 and i16, the type
of mul may be shrunk to use pmullw + pmulhw/pmulhuw instead of pmuludq, which
generates better code. For targets with SSE41, pmulld is supported so no
shrinking is needed.
Differential Revision: http://reviews.llvm.org/D20931
llvm-svn: 272694