1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
Commit Graph

957 Commits

Author SHA1 Message Date
Nuno Lopes
4599be1fc4 LangRef: fix significand bits of fp128 2020-12-31 11:13:25 +00:00
Bjorn Pettersson
3774e2781f Add intrinsics for saturating float to int casts
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ

The intrinsics have overloaded source and result type and support
vector operands:

    i32 @llvm.fptoui.sat.i32.f32(float %f)
    i100 @llvm.fptoui.sat.i100.f64(double %f)
    <4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
    // etc

On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:

    i19 @llvm.fptsi.sat.i19.f32(float %f)
    // builds
    i19 fp_to_sint_sat f, 19
    // type legalizes (through integer result promotion)
    i32 fp_to_sint_sat f, 19

I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.

There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:

    f = fmaxnum f, FP(MIN)
    f = fminnum f, FP(MAX)
    i = fptoxi f
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

If the bounds cannot be exactly represented, we expand to something
like this instead:

    i = fptoxi f
    i = select f ult FP(MIN), MIN, i
    i = select f ogt FP(MAX), MAX, i
    i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN

It should be noted that this expansion assumes a non-trapping fptoxi.

Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.

Original patch by @nikic and @ebevhan (based on D54696).

Differential Revision: https://reviews.llvm.org/D54749
2020-12-18 11:09:41 +01:00
Rong Xu
92b9137fcb [IR][PGO] Add hot func attribute and use hot/cold attribute in func section
Clang FE currently has hot/cold function attribute. But we only have
cold function attribute in LLVM IR.

This patch adds support of hot function attribute to LLVM IR.  This
attribute will be used in setting function section prefix/suffix.
Currently .hot and .unlikely suffix only are added in PGO (Sample PGO)
compilation (through isFunctionHotInCallGraph and
isFunctionColdInCallGraph).

This patch changes the behavior. The new behavior is:
(1) If the user annotates a function as hot or isFunctionHotInCallGraph
    is true, this function will be marked as hot. Otherwise,
(2) If the user annotates a function as cold or
    isFunctionColdInCallGraph is true, this function will be marked as
    cold.

The changes are:
(1) user annotated function attribute will used in setting function
    section prefix/suffix.
(2) hot attribute overwrites profile count based hotness.
(3) profile count based hotness overwrite user annotated cold attribute.

The intention for these changes is to provide the user a way to mark
certain function as hot in cases where training input is hard to cover
all the hot functions.

Differential Revision: https://reviews.llvm.org/D92493
2020-12-17 18:41:12 -08:00
Fangrui Song
803a9c9668 [LangRef] Update new ssp/sspstrong/sspreq semantics after D91816
Reviewed By: nickdesaulniers

Differential Revision: https://reviews.llvm.org/D93422
2020-12-17 09:16:37 -08:00
Matt Arsenault
a6f5a606fa LangRef: Update byval/sret description for required types 2020-12-16 10:25:36 -05:00
Joe Ellis
eb525ef991 [SelectionDAG] Add llvm.vector.{extract,insert} intrinsics
This commit adds two new intrinsics.

- llvm.experimental.vector.insert: used to insert a vector into another
  vector starting at a given index.

- llvm.experimental.vector.extract: used to extract a subvector from a
  larger vector starting from a given index.

The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.

Reviewed By: cameron.mcinally

Differential Revision: https://reviews.llvm.org/D91362
2020-12-09 11:08:41 +00:00
Tim Northover
0fd5aa6df8 UBSAN: emit distinctive traps
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
2020-12-08 10:28:26 +00:00
David Sherwood
6d7c7dcc2b [SVE] Add support for scalable vectors with vectorize.scalable.enable loop attribute
In this patch I have added support for a new loop hint called
vectorize.scalable.enable that says whether we should enable scalable
vectorization or not. If a user wants to instruct the compiler to
vectorize a loop with scalable vectors they can now do this as
follows:

  br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !2
  ...
  !2 = !{!2, !3, !4}
  !3 = !{!"llvm.loop.vectorize.width", i32 8}
  !4 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}

Setting the hint to false simply reverts the behaviour back to the
default, using fixed width vectors.

Differential Revision: https://reviews.llvm.org/D88962
2020-12-02 13:23:43 +00:00
Juneyoung Lee
b00d8684c3 [LangRef] missing link, minor fix 2020-11-30 23:09:36 +09:00
Juneyoung Lee
e5f43fdeb3 [LangRef] minor fixes to poison examples and well-defined values section (NFC) 2020-11-29 20:51:25 +09:00
Juneyoung Lee
7546d005c8 [LangRef] Add poison constant
This patch adds a description about the newly added poison constant to LangRef.

Differential Revision: https://reviews.llvm.org/D92162
2020-11-27 10:29:52 +09:00
Alex Richardson
9c96f39f77 Add a default address space for globals to DataLayout
This is similar to the existing alloca and program address spaces (D37052)
and should be used when creating/accessing global variables.
We need this in our CHERI fork of LLVM to place all globals in address space 200.
This ensures that values are accessed using CHERI load/store instructions
instead of the normal MIPS/RISC-V ones.

The problem this is trying to fix is that most of the time the type of
globals is created using a simple PointerType::getUnqual() (or ::get() with
the default address-space value of 0). This does not work for us and we get
assertion/compilation/instruction selection failures whenever a new call
is added that uses the default value of zero.

In our fork we have removed the default parameter value of zero for most
address space arguments and use DL.getProgramAddressSpace() or
DL.getGlobalsAddressSpace() whenever possible. If this change is accepted,
I will upstream follow-up patches to use DL.getGlobalsAddressSpace() instead
of relying on the default value of 0 for PointerType::get(), etc.

This patch and the follow-up changes will not have any functional changes
for existing backends with the default globals address space of zero.
A follow-up commit will change the default globals address space for
AMDGPU to 1.

Reviewed By: dylanmckay

Differential Revision: https://reviews.llvm.org/D70947
2020-11-20 15:46:52 +00:00
Leonard Chan
c24d9d2b01 [llvm][IR] Add dso_local_equivalent Constant
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.

When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.

In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
  advantage of `dso_local_equivalent` for relative references

This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.

See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.

Differential Revision: https://reviews.llvm.org/D77248
2020-11-19 10:26:17 -08:00
Nick Desaulniers
b2b1b97849 Revert "[IR] add fn attr for no_stack_protector; prevent inlining on mismatch"
This reverts commit b7926ce6d7a83cdf70c68d82bc3389c04009b841.

Going with a simpler approach.
2020-11-17 17:27:14 -08:00
Nikita Popov
effaed5675 [LangRef] Clarify GEP inbounds wrapping semantics
Clarify the semantics of GEP inbounds, in particular with regard
to what it means for wrapping. This cleans up some confusion on
when it is legal to apply nuw/nsw flags to various parts of the
GEP calculation.

Differential Revision: https://reviews.llvm.org/D90708
2020-11-13 17:49:41 +01:00
Florian Hahn
041da6277f Add !annotation metadata and remarks pass.
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.

It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.

The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.

To motivate this, consider these specific questions we would like to get answered:

* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?

Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)

Reviewed By: thegameg, jdoerfert

Differential Revision: https://reviews.llvm.org/D91188
2020-11-13 13:24:10 +00:00
David Green
f1fd013f54 [Sphinx] Fix langref formatting. NFC 2020-11-10 16:47:43 +00:00
David Green
0773b05cfa [ARM] Alter t2DoLoopStart to define lr
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR

This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.

This is a fairly simple change in itself, but leads to a number of other
required alterations.

 - The hardware loop pass, if UsePhi is set, now generates loops of the
   form:
       %start = llvm.start.loop.iterations(%N)
     loop:
       %p = phi [%start], [%dec]
       %dec = llvm.loop.decrement.reg(%p, 1)
       %c = icmp ne %dec, 0
       br %c, loop, exit
 - For this a new llvm.start.loop.iterations intrinsic was added, identical
   to llvm.set.loop.iterations but produces a value as seen above, gluing
   the loop together more through def-use chains.
 - This new instrinsic conceptually produces the same output as input,
   which is taught to SCEV so that the checks in MVETailPredication are not
   affected.
 - Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
   been left mostly as before. We should now more reliably be able to tell
   that the t2DoLoopStart is correct without having to prove it, but
   t2WhileLoopStart and tail-predicated loops will remain the same.
 - And all the tests have been updated. There are a lot of them!

This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.

Differential Revision: https://reviews.llvm.org/D89881
2020-11-10 15:57:58 +00:00
Atmn Patel
f818c9012a [LangRef] Adds llvm.loop.mustprogress loop metadata
This patch adds the llvm.loop.mustprogress loop metadata. This is to be
added to loops where the frontend language requires that the loop makes
observable interactions with the environment. This is the loop-level
equivalent to the function attribute `mustprogress` defined in D86233.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D88464
2020-11-04 22:32:50 -05:00
Nikita Popov
261a4b21fb [CodeGen] Fix neutral value of vecreduce fadd in tests (NFC)
The neutral value is -0.0, not 0.0. This doesn't matter for "fast"
reductions due to nsz, but does matter for reassoc-only and seq
reductions.

Change tests to mostly use -0.0 where the neutral value was intended,
and add some additional test coverage in some places. Also update
LangRef to use the right value.
2020-10-29 21:26:14 +01:00
Johannes Doerfert
bf9703343b [LangRef] Clarify dereferenceable -> nonnull implication
If `null_pointer_is_valid` is present, `dereferenceable` does not imply
`nonnull`, make it clear.

Came up in D17993.

Reviewed By: aqjune

Differential Revision: https://reviews.llvm.org/D89417
2020-10-27 19:12:53 -05:00
Artur Pilipenko
31af2fa7ed GC-parseable element atomic memcpy/memmove
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.

See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ

Differential Revision: https://reviews.llvm.org/D88861
2020-10-23 14:06:09 -07:00
Nick Desaulniers
e95a065d26 [IR] add fn attr for no_stack_protector; prevent inlining on mismatch
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.

It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.

While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/
https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u

Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining.  Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.

Fixes pr/47479.

Reviewed By: void

Differential Revision: https://reviews.llvm.org/D87956
2020-10-23 11:55:39 -07:00
Atmn Patel
cbe95c4921 [LangRef] Define mustprogress attribute
LLVM IR currently assumes some form of forward progress. This form is
not explicitly defined anywhere, and is the cause of miscompilations
in most languages that are not C++11 or later. This implicit forward progress
guarantee can not be opted out of on a function level nor on a loop
level. Languages such as C (C11 and later), C++ (pre-C++11), and Rust
have different forward progress requirements and this needs to be
evident in the IR.

Specifically, C11 and onwards (6.8.5, Paragraph 6) states that "An
iteration statement whose controlling expression is not a constant
expression, that performs no input/output operations, does not access
volatile objects, and performs no synchronization or atomic operations
in its body, controlling expression, or (in the case of for statement)
its expression-3, may be assumed by the implementation to terminate."
C++11 and onwards does not have this assumption, and instead assumes
that every thread must make progress as defined in [intro.progress] when
it comes to scheduling.

This was initially brought up in [0] as a bug, a solution was presented
in [1] which is the current workaround, and the predecessor to this
change was [2].

After defining a notion of forward progress for IR, there are two
options to address this:
1) Set the default to assuming Forward Progress and provide an opt-out for functions and an opt-in for loops.
2) Set the default to not assuming Forward Progress and provide an opt-in for functions, and an opt-in for loops.

Option 2) has been selected because only C++11 and onwards have a
forward progress requirement and it makes sense for them to opt-into it
via the defined `mustprogress` function attribute.  The `mustprogress`
function attribute indicates that the function is required to make
forward progress as defined. This is sharply in contrast to the status
quo where this is implicitly assumed. In addition, `willreturn` implies `mustprogress`.

The background for why this definition was chosen is in [3] and for why
the option was chosen is in [4] and the corresponding thread(s). The implementation is in D85393, the
clang patch is in D86841, the LoopDeletion patch is in D86844, the
Inliner patches are in D87180 and D87262, and there will be more
incoming.

[0] https://bugs.llvm.org/show_bug.cgi?id=965#c25
[1] https://lists.llvm.org/pipermail/llvm-dev/2017-October/118558.html
[2] https://reviews.llvm.org/D65718
[3] https://lists.llvm.org/pipermail/llvm-dev/2020-September/144919.html
[4] https://lists.llvm.org/pipermail/llvm-dev/2020-September/145023.html

Reviewed By: jdoerfert, efriedma, nikic

Differential Revision: https://reviews.llvm.org/D86233
2020-10-19 13:34:27 -04:00
Sam Parker
1e873328c1 [LangRef] Correct return type llvm.test.set.loop.iterations.*
The langref description for llvm.test.set.loop.iterations.* were
missing the i1 return type.

Differential Revision: https://reviews.llvm.org/D89564

Patch by: Janek van Oirschot
2020-10-19 12:56:38 +01:00
Juneyoung Lee
e7de338270 Add support for !noundef metatdata on loads
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.

This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.

The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D89050
2020-10-17 13:50:10 +09:00
Juneyoung Lee
59a2a236c5 [LangRef] Rename the names of metadata in load/store's syntax (NFC)
Discussed in D89050
2020-10-17 13:30:02 +09:00
Alok Kumar Sharma
b846ffc438 [DebugInfo] Support for DWARF operator DW_OP_over
LLVM rejects DWARF operator DW_OP_over. This DWARF operator is needed
for Flang to support assumed rank array.

  Summary:
Currently LLVM rejects DWARF operator DW_OP_over. Below error is
produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151, 20, 16, 48, 30, 35, 80, 34, 6)
warning: ignoring invalid debug info in over.ll
[..]
There were some parts missing in support of this operator, which are
now completed.

  Testing
-added a unit testcase
-check-debuginfo
-check-llvm

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D89208
2020-10-17 08:42:28 +05:30
Matt Arsenault
e3bfefd3cc Reapply "OpaquePtr: Add type to sret attribute"
This reverts commit eb9f7c28e5fe6d75fed3587023e17f2997c8024b.

Previously this was incorrectly handling linking of the contained
type, so this merges the fixes from D88973.
2020-10-16 11:05:02 -04:00
Scott Linder
c5455cf70e [DebugInfo][docs] Document DILabel in LangRef
Add some minimal documentation for DILabel, originally introduced in
D45024. Update the name and semantics of the `variables:` field in the
documentation for `DISubprogram`; the field is now called
`retainedNodes:` and is a heterogeneous list of `DILocalVariable` and
`DILabel`.

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D89082
2020-10-13 18:26:41 +00:00
Alok Kumar Sharma
0a8029e199 [DebugInfo] Support for DWARF attribute DW_AT_rank
This patch adds support for DWARF attribute DW_AT_rank.

  Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.

  Testing:
unit test cases added (hand-written)
check llvm
check debug-info

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D89141
2020-10-10 17:51:12 +05:30
Amara Emerson
59c2440372 [llvm][mlir] Promote the experimental reduction intrinsics to be first class intrinsics.
This change renames the intrinsics to not have "experimental" in the name.

The autoupgrader will handle legacy intrinsics.

Relevant ML thread: http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

Differential Revision: https://reviews.llvm.org/D88787
2020-10-07 10:36:44 -07:00
Michael Kruse
a5187b0c04 [docs] Revise loop terminology reference.
Motivated by D88183, this seeks to clarify the current loop nomenclature with added illustrations, examples for possibly unexpected situations (infinite loops not part of the "parent" loop, logical loops sharing the same header, ...), and clarification on what other sources may consider a loop. The current document also has multiple errors that are fixed here.

Some selected errors:
 * Loops a defined as strongly-connected components. A component a partition of all nodes, i.e. a subloop can never be a component. That is, the document as it currently is only covers top-level loops, even it also uses the term SCC for subloops.
 * "a block can be the header of two separate loops at the same time" (it is considered a single loop by LoopInfo)
 * "execute before some interesting event happens" (some interesting event is not well-defined)

Reviewed By: baziotis, Whitney

Differential Revision: https://reviews.llvm.org/D88408
2020-10-05 10:28:04 -05:00
Tres Popp
59b6daf823 Revert "OpaquePtr: Add type to sret attribute"
This reverts commit 55c4ff91bd820d72014f63dcf7f3d5a0d3397986.

Issues were introduced as discussed in https://reviews.llvm.org/D88241
where this change made previous bugs in the linker and BitCodeWriter
visible.
2020-09-29 10:31:04 +02:00
Juneyoung Lee
68fbee82fd [LangRef] Clarify the behavior of memory access instructions when pointers/sizes aren't well-defined
This is a patch to LangRef that clarifies the behavior of load/store/memset/memcpy/memmove when the pointers or sizes are not well-defined
as well.

MSan detects a case when e.g., only lower bits of address are garbage when `-msan-check-access-address` is enabled, and it does not directly conflict with this patch because a C program should not use a pointer with undef bits and reasonable optimizations do not convert a well-defined pointer into a pointer with undef bits.

This patch contains a definition of a well-defined value as well.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D87994
2020-09-26 08:13:27 +09:00
Matt Arsenault
0ec533bb8a OpaquePtr: Add type to sret attribute
Make the corresponding change that was made for byval in
b7141207a483d39b99c2b4da4eb3bb591eca9e1a. Like byval, this requires a
bulk update of the test IR tests to include the type before this can
be mandatory.
2020-09-25 14:07:30 -04:00
Sanjay Patel
2c86671523 [Intrinsics] define semantics for experimental fmax/fmin vector reductions
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/140729.html

This is hopefully the final remaining showstopper before we can remove
the 'experimental' from the reduction intrinsics.

No behavior was specified for the FP min/max reductions, so we have a
mess of different interpretations.

There are a few potential options for the semantics of these max/min ops.
I think this is the simplest based on current behavior/implementation:
make the reductions inherit from the existing llvm.maxnum/minnum intrinsics.
These correspond to libm fmax/fmin, and those are similar to the (now
deprecated?) IEEE-754 maxNum/minNum functions (NaNs are treated as missing
data). So the default expansion creates calls to libm functions.

Another option would be to inherit from llvm.maximum/minimum (NaNs propagate),
but most targets just crash in codegen when given those nodes because no
default expansion was ever implemented AFAICT.

We could also just assume 'nnan' semantics by default (we are already
assuming 'nsz' semantics in the maxnum/minnum intrinsics), but some targets
(AArch64, PowerPC) support the more defined behavior, so it doesn't make much
sense to not allow a tighter spec. Fast-math-flags (nnan) can be used to
loosen the semantics.

(Note that D67507 was proposed to update the LangRef to acknowledge the more
recent IEEE-754 2019 standard, but that patch seems to have stalled. If we do
update based on the new standard, the reduction instructions can seamlessly
inherit from whatever updates are made to the max/min intrinsics.)

x86 sees a regression here on 'nnan' tests because we have underlying,
longstanding bugs in FMF creation/propagation. Those need to be fixed apart
from this change (for example: https://llvm.org/PR35538). The expansion
sequence before this patch may not have been correct.

Differential Revision: https://reviews.llvm.org/D87391
2020-09-12 09:10:28 -04:00
Florian Hahn
6276196b86 [LangRef] Adjust guarantee for llvm.memcpy to also allow equal arguments.
This adjusts the description of `llvm.memcpy` to also allow operands
to be equal. This is in line with what Clang currently expects.

This change is intended to be temporary and followed by re-introduce
a variant with the non-overlapping guarantee for cases where we can
actually ensure that property in the front-end.

See the links below for more details:
http://lists.llvm.org/pipermail/cfe-dev/2020-August/066614.html
and PR11763.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D86815
2020-09-05 19:18:23 +01:00
Yang Zhihui
50256eeb51 Fix typos in doc LangRef.rst
Reviewed By: vitalybuka

Differential Revision: https://reviews.llvm.org/D87077
2020-09-04 05:17:31 -07:00
Michael Kruse
292847821f [LangRef] Fix condition for when a loop is considered parallel.
The wording before this patch applies to llvm.mem.parallel_loop_access, not access groups.

Reviewed By: mppf, hfinkel

Differential Revision: https://reviews.llvm.org/D83781
2020-09-01 15:41:59 -05:00
Juneyoung Lee
d99f7f85b1 [LangRef] Apply a missing comment from D86189 2020-08-30 14:56:17 +09:00
Juneyoung Lee
f38cacc4bc [LangRef] State that storing an aggregate fills padding with undef
This patch makes LangRef be explicit about the value of padding when storing an aggregate.
It states that when an aggregate is stored into memory, padding is filled with undef.

Here is a clue that supports this change (edited to reflect the discussion from llvm-dev):

- IPSCCP ignores padding and directly stores a constant aggregate if possible. It loses the data stored in the padding. https://godbolt.org/z/xzenYs Memcpyopt ignores (the preexisting value of) padding when copying an aggregate or storing a constant: https://godbolt.org/z/hY6ndd / https://godbolt.org/z/3WMP5a

The two items below are not relevant with this patch because Clang lowers load/store of individual field of struct into load/stores of the corresponding pointer with a primitive type. Also, when copy is needed, it uses memcpy instead of load/store of an aggregate, as discussed in the llvm-dev. However, this patch is still valid (as discussed) because it is needed to explain the two optimizations above.

- According to C17, the value of padding bytes when storing values in structures or unions is unspecified.

- I updated Alive2 and it did not find any problematic transformation from LLVM unit tests and while running translation validation of a few C programs.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D86189
2020-08-30 14:53:20 +09:00
Sjoerd Meijer
7ef96b82c5 Follow up of rGca243b07276a: fixed a typo. NFC. 2020-08-27 10:53:41 +01:00
Sjoerd Meijer
fe5ce52722 [LangRef] get.active.lane.mask can produce poison value
We had already specified that second argument `n` of this intrinsic is `n > 0`,
but now add to this that the result is a poison value if this is not the case.

Differential Revision: https://reviews.llvm.org/D86637
2020-08-27 08:57:35 +01:00
Juneyoung Lee
caa42f61a0 [LangRef] Memset/memcpy/memmove can take undef/poison pointer if the size is 0
According to the current LangRef, Memset/memcpy/memmove can take a
null/dangling pointer if the size is zero.
(Relevant thread: http://lists.llvm.org/pipermail/llvm-dev/2017-July/115665.html )
This patch expands it and allows the functions to take undef/poison pointers
too.

This required the updates in the align attribute since it isn't specified
what is the alignment of undef/poison pointers.
This patch states that their alignment is 1.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D86643
2020-08-27 06:19:28 +09:00
Sjoerd Meijer
ac0a363b76 [LangRef] Revise semantics of intrinsic get.active.lane.mask
A first version of get.active.lane.mask was committed in rG7fb8a40e5220. One of
the main purposes and uses of this intrinsic is to communicate information from
the middle-end to the back-end, but its current definition and semantics make
this actually very difficult. The intrinsic was defined as:

  @llvm.get.active.lane.mask(%IV, %BTC)

where %BTC is the Backedge-Taken Count (variable names are different in the
LangRef spec). This allows to implicitly communicate the loop tripcount, which
can be reconstructed by calculating BTC + 1. But it has been very difficult to
prove that calculating BTC + 1 is safe and doesn't overflow. We need
complicated range and SCEV analysis, and thus the problem is that this
intrinsic isn't really doing what it was supposed to solve. Examples of the
overflow checks that are required in the (ARM) back-end are D79175 and D86074,
which aren't even complete/correct yet.

To solve this problem, we are revising the definitions/semantics for
get.active.lane.mask to avoid all the complicated overflow analysis. This means
that instead of communicating the BTC, we are now using the loop tripcount. Now
using LangRef's variable names, its semantics is changed from:

  icmp ule (%base + i), %n

to:

  icmp ult (%base + i), %n

with %n > 0 and corresponding to the loop tripcount. The intrinsic signature
remains the same.

Differential Revision: https://reviews.llvm.org/D86147
2020-08-25 16:23:51 +01:00
Philip Reames
340c7ffdef Remove deopt and gc transition arguments from gc.statepoint intrinsic
(Forgot to land this a couple of weeks back.)

In a recent series of changes, I've introduced support for using the respective operand bundle kinds on the statepoint. At the moment, code supports either/or, but there's no need to keep the old support around. For the moment, I am simply changing the specification and verifier to require zero length argument sets in the intrinsic.

The intrinsic itself is experimental. Given that, there's no forward serialization needed. The in tree uses and generation have already been updated to use the new operand bundle based forms, the only folks broken by the change will be those with frontends generating statepoints directly and the updates should be easy.

Why not go ahead and just remove the arguments entirely? Well, I plan to. But while working on this I've found that almost all of the arguments to the statepoint can be expressed via operand bundles or attributes. Given that, I'm planning a radical simplification of the arguments and figured I'd do one update not several small ones.

Differential Revision: https://reviews.llvm.org/D80892
2020-08-14 16:07:40 -07:00
Kazu Hirata
fc9284d5ff [docs] Fix typos 2020-08-09 19:31:49 -07:00
Bevin Hansson
7c243aea4b [Intrinsic] Add sshl.sat/ushl.sat, saturated shift intrinsics.
Summary:
This patch adds two intrinsics, llvm.sshl.sat and llvm.ushl.sat,
which perform signed and unsigned saturating left shift,
respectively.

These are useful for implementing the Embedded-C fixed point
support in Clang, originally discussed in
http://lists.llvm.org/pipermail/llvm-dev/2018-August/125433.html
and
http://lists.llvm.org/pipermail/cfe-dev/2018-May/058019.html

Reviewers: leonardchan, craig.topper, bjope, jdoerfert

Subscribers: hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83216
2020-08-07 15:09:24 +02:00
Bevin Hansson
71fc113f30 [LangRef] Minor fixes to intrinsic headers and descriptions. NFC. 2020-08-07 15:09:24 +02:00
Simon Pilgrim
0fc57afbbe Fix sphinx indentation warning to stop newline in byref section html output. 2020-08-04 16:12:50 +01:00
Jinsong Ji
a3d207d6bc Re-land "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit bf544fa1c3cb80f24d85e84559fb11193846259f.

Fixed the typo in PPCInstrInfo.cpp.
2020-07-28 14:00:11 +00:00
Jinsong Ji
89408b2ab3 Revert "[PowerPC] Remove QPX/A2Q BGQ/BGP CNK support"
This reverts commit adffce71538e219aab4eeb024819baa7687262ff.

This is breaking test-suite, revert while investigation.
2020-07-27 21:07:00 +00:00
Jinsong Ji
2d65e976a4 [PowerPC] Remove QPX/A2Q BGQ/BGP CNK support
Per RFC http://lists.llvm.org/pipermail/llvm-dev/2020-April/141295.html
no one is making use of QPX/A2Q/BGQ/BGP CNK anymore.

This patch remove the support of QPX/A2Q in llvm, BGQ/BGP in clang,
CNK support in openmp/polly.

Reviewed By: hfinkel

Differential Revision: https://reviews.llvm.org/D83915
2020-07-27 19:24:39 +00:00
Roman Lebedev
39bcc4be1d [LangRef] Add integer min/max/abs intrinsics
Add LangRef specification for the llvm.abs, llvm.umin, llvm.umax,
llvm.smin, and llvm.smax integer intrinsics.

Link to RFC:
https://lists.llvm.org/pipermail/llvm-dev/2020-June/142257.html

Proposed alive2 implementation:
https://github.com/AliveToolkit/alive2/pull/353

Differential Revision: https://reviews.llvm.org/D81829
2020-07-23 20:56:18 +02:00
Alok Kumar Sharma
0a592fd282 [DebugInfo] Support for DW_AT_associated and DW_AT_allocated.
Summary:
This support is needed for the Fortran array variables with pointer/allocatable
attribute. This support enables debugger to identify the status of variable
whether that is currently allocated/associated.

  for pointer array (before allocation/association)
  without DW_AT_associated

(gdb) pt ptr
type = integer (140737345375288:140737354129776)
(gdb) p ptr
value requires 35017956 bytes, which is more than max-value-size

  with DW_AT_associated

(gdb) pt ptr
type = integer (:)
(gdb) p ptr
$1 = <not associated>

  for allocatable array (before allocation)

  without DW_AT_allocated

(gdb) pt arr
type = integer (140737345375288:140737354129776)
(gdb) p arr
value requires 35017956 bytes, which is more than max-value-size

  with DW_AT_allocated

(gdb) pt arr
type = integer, allocatable (:)
(gdb) p arr
$1 = <not allocated>

    Testing
- unit test cases added
- check-llvm
- check-debuginfo

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D83544
2020-07-20 19:54:35 +05:30
Matt Arsenault
ea505ad2f6 IR: Define byref parameter attribute
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.

This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.

My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.

This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.

Background:

There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.

It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.

The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.

This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.

Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.

The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.

Additional context is in D79744.
2020-07-20 10:23:09 -04:00
Juneyoung Lee
a4af7cf1e9 [LangRef] Mention that freeze does not consider aggregate's paddings
Make explicit that freeze does not touch paddings of an aggregate.
(Relevant comment: https://reviews.llvm.org/D83752#2152550)

This implies that `v = freeze(load p); store v, q` may still leave undef bits
or poison in memory if `v` is an aggregate, but it still happens for
non-byte integers such as i1.

Differential Revision: https://reviews.llvm.org/D83927
2020-07-17 11:53:26 +09:00
Sjoerd Meijer
e1b03eb222 Follow up of 2b3c505d0f6e: fixed a typo, and added some more formatting. NFC. 2020-07-16 11:16:48 +01:00
Tim Northover
80a21440b3 AArch64+ARM: make LLVM consider system registers volatile.
Some of the system registers readable on AArch64 and ARM platforms
return different values with each read (for example a timer counter),
these shouldn't be hoisted outside loops or otherwise interfered with,
but the normal @llvm.read_register intrinsic is only considered to read
memory.

This introduces a separate @llvm.read_volatile_register intrinsic and
maps all system-registers on ARM platforms to use it for the
__builtin_arm_rsr calls. Registers declared with asm("r9") or similar
are unaffected.
2020-07-15 09:47:36 +01:00
Sjoerd Meijer
1a682582ae [Matrix] Intrinsic descriptions
This changes the matrix load/store intrinsic definitions to load/store from/to
a pointer, and not from/to a pointer to a vector, as discussed in D83477.

This also includes the recommit of "[Matrix] Tighten LangRef definitions and
Verifier checks" which adds improved language reference descriptions of the
matrix intrinsics and verifier checks.

Differential Revision: https://reviews.llvm.org/D83785
2020-07-14 19:58:16 +01:00
Michael Kruse
186e2229e8 [docs] Update llvm.loop metadata documentation.
Loop metadata nodes do not adhere to the documented property:

(a) LoopIDs are not unique: Any pass that duplicates IR will do it
    including its metadata (e.g. LoopVersioning) such that multiple
    loops are linked with the same LoopID. There is even a test case
    (Transforms/LoopUnroll/unroll-pragmas-disabled.ll) for multiple
    loops with the same LoopID.

(b) LoopIDs are not persistent: Adding or removing an item from a LoopID
    can only be done by creating a new MDNode and assigning it to the
    loop's branch(es). Passes such as LoopUnroll (llvm.loop.unroll.disable)
    and LoopVectorize (llvm.loop.isvectorized) use this to mark loops to
    not be transformed multiple times or to avoid that a LoopVersioned
    original loop is transformed.

Update the documentation according to how llvm.loop is used in practice.

Differential Revision: https://reviews.llvm.org/D55290
2020-07-14 11:03:57 -05:00
Sjoerd Meijer
ab1d7d92a0 Revert "[Matrix] Tighten LangRef definitions and Verifier checks."
This reverts commit f4d29d6e8c43cfd924d9d7cc1ac0c269b2788e75.

Hm, some build bot failures, reverting it while I investigate that.
2020-07-12 19:19:25 +01:00
Sjoerd Meijer
27fa48a9d2 [Matrix] Tighten LangRef definitions and Verifier checks.
This tightens the matrix intrinsic definitions in LLVM LangRef and adds
correspondings checks to the IR Verifier.

Differential Revision: https://reviews.llvm.org/D83477
2020-07-12 19:07:22 +01:00
Sanjay Patel
9bc8c780ab [DAGCombiner] tighten fast-math constraints for fma fold
fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)

This is only allowed when "reassoc" is present on the fadd.

As discussed in D80801, this transform goes beyond
what is allowed by "contract" FMF (-ffp-contract=fast).
That is because we are fusing the trailing add of 'E' with a
multiply, but without "reassoc", the code mandates that the
products A*B and C*D are added together before adding in 'E'.

I've added this example to the LangRef to try to clarify the
meaning of "contract". If that seems reasonable, we should
probably do something similar for the clang docs because
there does not appear to be any formal spec for the behavior
of -ffp-contract=fast.

Differential Revision: https://reviews.llvm.org/D82499
2020-07-12 08:51:49 -04:00
Vitaly Buka
b4bde7a6b6 [StackSafety,NFC] Update documentation
It's follow up for D80908

Reviewed By: tejohnson

Differential Revision: https://reviews.llvm.org/D82941
2020-07-08 23:57:13 -07:00
Gui Andrade
905f645c80 [LangRef] Introduce noundef attribute for fully defined function params
LLVM currently does not require function parameters or return values
to be fully initialized, and does not care if they are poison. This can
be useful if the frontend ABI makes no such demands, but may prevent
helpful backend transformations in case they do. Specifically, the C
and C++ languages require all scalar function operands to be fully
determined.

Introducing this attribute is of particular use to MemorySanitizer
today, although other transformations may benefit from it as well.
We can modify MemorySanitizer instrumentation to provide modest (17%)
space savings where `frozen` is present.

This commit only adds the attribute to the Language Reference, and
the actual implementation of the attribute will follow in a separate
commit.

Differential Revision: https://reviews.llvm.org/D82316
2020-07-08 19:02:04 +00:00
Arthur Eubanks
9f384ed588 [Preallocated] Add @llvm.call.preallocated.teardown
This cleans up the stack allocated by a @llvm.call.preallocated.setup.
Should either call the teardown or the preallocated call to clean up the
stack. Calling both is UB.

Add LangRef.

Add verifier check that the token argument is a @llvm.call.preallocated.setup.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D83354
2020-07-08 08:48:44 -07:00
jasonliu
b6227b52f3 [XCOFF][AIX] Use 'L..' instead of '.L' for getPrivateGlobalPrefix in DataLayout
Summary:
D80831 changed part of the prefix usage for AIX.
But there are other places getting prefix from DataLayout.
This patch intends to make prefix usage consistent on AIX.

Reviewed by: hubert.reinterpretcast, daltenty

Differential Revision: https://reviews.llvm.org/D81270
2020-07-03 18:25:14 +00:00
Dmitry Preobrazhensky
9877ca8a82 [AMDGPU][CODEGEN] Added support of new inline assembler constraints
Added support for constraints 'I', 'J', 'B', 'C', 'DA', 'DB'.

See https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html#Machine-Constraints.

Reviewers: arsenm, rampitec

Differential Revision: https://reviews.llvm.org/D81651
2020-07-02 17:20:15 +03:00
Matt Arsenault
e686e7788e LLParser: Accept align(N) as new syntax for parameter attribute
Every other value parameter attribute uses parentheses, so accept this
as the preferred modern syntax. Updating everything to use the new
syntax is left for a future change.
2020-06-26 18:10:21 -04:00
Zhi Zhuang
f01cbeb3f2 Add support of __builtin_expect_with_probability
Add a new builtin-function __builtin_expect_with_probability and
intrinsic llvm.expect.with.probability.
The interface is __builtin_expect_with_probability(long expr, long
expected, double probability).
It is mainly the same as __builtin_expect besides one more argument
indicating the probability of expression equal to expected value. The
probability should be a constant floating-point expression and be in
range [0.0, 1.0] inclusive.
It is similar to builtin-expect-with-probability function in GCC
built-in functions.

Differential Revision: https://reviews.llvm.org/D79830
2020-06-22 10:21:28 -07:00
Nikita Popov
4f7034955e [LangRef] Fix sphinx warnings 2020-06-21 13:51:07 +02:00
Amara Emerson
e0073c8e78 [docs] Clarify semantics of ordered fadd/fmul reductions.
Differential Revision: https://reviews.llvm.org/D82034
2020-06-18 09:10:43 -07:00
Florian Hahn
d6537a7e9f [Matrix] Update load/store intrinsics.
This patch adjust the load/store matrix intrinsics, formerly known as
llvm.matrix.columnwise.load/store, to improve the naming and allow
passing of extra information (volatile).

The patch performs the following changes:
 * Rename columnwise.load/store to column.major.load/store. This is more
   expressive and also more in line with the naming in Clang.
 * Changes the stride arguments from i32 to i64. The stride can be
   larger than i32 and this makes things more uniform with the way
   things are handled in Clang.
 * A new boolean argument is added to indicate whether the load/store
   is volatile. The lowering respects that when emitting vector
   load/store instructions
 * MatrixBuilder is updated to require both Alignment and IsVolatile
   arguments, which are passed through to the generated intrinsic. The
   alignment is set using the `align` attribute.

The changes are grouped together in a single patch, to have a single
commit that breaks the compatibility. We probably should be fine with
updating the intrinsics, as we did not yet officially support them in
the last stable release. If there are any concerns, we can add
auto-upgrade rules for the columnwise intrinsics though.

Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke, nicolasvasilache, rjmccall, ftynse

Reviewed By: anemet, nicolasvasilache

Differential Revision: https://reviews.llvm.org/D81472
2020-06-18 09:44:52 +01:00
Vitaly Buka
63df17ad8b [StackSafety] Add info into function summary
Summary:
This patch adds optional field into function summary,
implements asm and bitcode serialization. YAML
serialization is omitted and can be added later if
needed.

This patch includes this information into summary only
if module contains at least one sanitize_memtag function.
In a near future MTE is the user of the analysis.
Later if needed we can provede more direct control
on when information is included into summary.

Reviewers: eugenis

Subscribers: hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80908
2020-06-10 02:43:28 -07:00
Philip Reames
16c247c68a Introduce a "gc-live" bundle for the gc arguments of a statepoint
Currently, gc.relocates are defined in terms of indices into the statepoint's operand list. Given the gc args are at the end of a variable length list of operands, this makes interpreting their indices by hand a tad challenging. We can simplify the statepoint sequence and improve readability quite a bit by pulling these new operands into their own named operand bundle.

This patch defines a new operand bundle tag "gc-live". The semantics of the bundle are the same as the existing gc arguments of a statepoint. This patch simply introduces the definition and codegen for the bundle, future patches will migrate RS4GC to emitting the new form.

Interestingly, with this done and the recent migration to using deopt and gc-transition bundles, we really don't have much left in the statepoint itself. It really looks like the existing ID and flags fields are redundant; we have (existing!) attributes for all of them. I think we'll be able to reduce the gc.statepoint signature to simply a wrapped call (e.g. actual target and actual arguments).

Differential Revision: https://reviews.llvm.org/D80937
2020-06-03 15:00:24 -07:00
Braedy Kuzma
463ba33aa8 [LangRef] Fix description of shape args for matrix.multiply.
Currently all code instances within the matrix lowering pass consider
matrix A to be MxN and B to be NxK, producing C which is MxK. Anyone
interacting with this API after reading the docs but without reading the pass
would expect A: MxK, B: KxN, and C: MxN. These changes bring the documentation
in line with the implementation.

One point of concern with this, the original signature as described in the docs
may be better or at least more expected. The interface as it was written
reflected other common matrix multiplication interfaces such as BLAS'[1], where
the matrices are MxK, KxN, MxN respectively. Choosing to honor this requires
changing code and tests instead, but should be mostly just renaming of variables.

Patch by Braedy Kuzma <braedy@ualberta.ca>

[1] http://www.netlib.org/lapack/explore-html/db/dc9/group__single__blas__level3_gafe51bacb54592ff5de056acabd83c260.html#gafe51bacb54592ff5de056acabd83c260

Reviewers: anemet, LuoYuanke, nicolasvasilache, fhahn

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D80663
2020-06-03 11:25:44 +01:00
Sjoerd Meijer
259a327aae New intrinsic @llvm.get.active.lane.mask()
This is split off from D79100 and:
- adds a intrinsic description/definition for @llvm.get.active.lane.mask(), and
- describe its semantics in LangRef.

As described (in more detail) in its LangRef section, it is semantically
equivalent to an icmp with the vector induction variable and the back-edge
taken count, and generates a mask of active/inactive vector lanes.

It will have several use cases. First, it will be used by the
ExpandVectorPredication pass for the VP intrinsics, to expand VP intrinsics for
scalable vectors on targets that do not support the `%evl` parameter, see
D78203.

Also, this is part of, and essential for our ARM MVE tail-predication story:
- this intrinsic will be emitted by the LoopVectorizer in D79100, when
  the scalar epilogue is tail-folded into the vector body. This new intrinsic
  will generate the predicate for the masked loads/stores, and it takes the
  back-edge taken count as an argument. The back-edge taken count represents the
  number of elements processed by the loop, which we need to setup MVE
  tail-predication.
- Emitting the intrinsic is controlled by a new TTI hook, see D80597.
- We pick up this new intrinsic in an ARM MVETailPredication backend pass, see
  D79175, and convert it to a MVE target specific intrinsic/instruction to
  create a tail-predicated loop.

Differential Revision: https://reviews.llvm.org/D80596
2020-05-29 08:51:40 +01:00
Sjoerd Meijer
69e0e4ce9a [HardwareLoops] LangRef Intrinsic descriptions
The HardwareLoop intrinsics were missing and not described in LangRef. This
adds these descriptions/definitions.

Differential Revision: https://reviews.llvm.org/D80316
2020-05-28 08:36:04 +01:00
Arthur Eubanks
79048330b0 Modify verifier checks to support musttail + preallocated
Summary:
preallocated and musttail can work together, but we don't want to call
@llvm.call.preallocated.setup() to modify the stack in musttail calls.
So we shouldn't have the "preallocated" operand bundle when a
preallocated call is musttail.

Also disallow use of preallocated on calls without preallocated.

Codegen not yet implemented.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80581
2020-05-26 15:20:20 -07:00
Vedant Kumar
85aef044f5 [DwarfExpression] Support entry values for indirect parameters
Summary:
A struct argument can be passed-by-value to a callee via a pointer to a
temporary stack copy. Add support for emitting an entry value DBG_VALUE
when an indirect parameter DBG_VALUE becomes unavailable. This is done
by omitting DW_OP_stack_value from the entry value expression, to make
the expression describe the location of an object.

rdar://63373691

Reviewers: djtodoro, aprantl, dstenb

Subscribers: hiraditya, lldb-commits, llvm-commits

Tags: #lldb, #llvm

Differential Revision: https://reviews.llvm.org/D80345
2020-05-26 14:22:28 -07:00
Serge Pavlov
e9538ca02f [FPEnv] Intrinsic llvm.roundeven
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.

Differential Revision: https://reviews.llvm.org/D75670
2020-05-26 19:24:58 +07:00
Serge Pavlov
e7037e72e6 [FPEnv] Small fixes to implementation of flt.rounds
This change makes minor correction to the implementation of intrinsic
`llvm.flt.rounds`:
- Added documentation entry in LangRef,
- Attributes of the intrinsic changed to be in line with other functions
  dependent of floating-point environment.

Differential Revision: https://reviews.llvm.org/D79322
2020-05-26 13:19:01 +07:00
Dmitry Preobrazhensky
7c3bcab688 [AMDGPU][CODEGEN] Added 'A' constraint for inline assembler
Summary: 'A' constraint requires an immediate int or fp constant that can be inlined in an instruction encoding.

Reviewers: arsenm, rampitec

Differential Revision: https://reviews.llvm.org/D78494
2020-05-25 14:23:34 +03:00
Nikita Popov
cf8ee33937 [IR] Convert null-pointer-is-valid into an enum attribute
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.

In the future, this attribute may be replaced with data layout
properties.

Differential Revision: https://reviews.llvm.org/D78862
2020-05-15 19:41:07 +02:00
Ties Stuij
745a9668d4 [IR][BFloat] Add BFloat IR type
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.

This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.

Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau

Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78190
2020-05-15 14:43:43 +01:00
Alok Kumar Sharma
1daff0ecf4 [DebugInfo] support for DW_AT_data_location in llvm
This patch adds support for DWARF attribute DW_AT_data_location.

Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.

Testing:
unit test cases added (hand-written)
check llvm
check debug-info

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D79592
2020-05-15 11:33:17 +05:30
Alok Kumar Sharma
9659dcb2f0 [DebugInfo] llvm rejects DWARF operator DW_OP_push_object_address
llvm rejects DWARF operator DW_OP_push_object_address.This DWARF
operator is needed for Flang to support allocatable array.

Summary:
Currently llvm rejects DWARF operator DW_OP_push_object_address.
below error is produced when llvm finds this operator.

[..]
invalid expression
!DIExpression(151)
warning: ignoring invalid debug info in pushobj.ll
[..]

There are some parts missing in support of this operator, need to
be completed.

Testing
-added a unit testcase
-check-debuginfo
-check-llvm

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D79306
2020-05-15 11:10:35 +05:30
Zequan Wu
570033ed62 Add nomerge function attribute to supress tail merge optimization in simplifyCFG
We want to add a way to avoid merging identical calls so as to keep the
separate debug-information for those calls. There is also an asan
usecase where having this attribute would be beneficial to avoid
alternative work-arounds.

Here is the link to the feature request:
https://bugs.llvm.org/show_bug.cgi?id=42783.

`nomerge` is different from `noline`. `noinline` prevents function from
inlining at callsites, but `nomerge` prevents multiple identical calls
from being merged into one.

This patch adds `nomerge` to disable the optimization in IR level. A
followup patch will be needed to let backend understands `nomerge` and
avoid tail merge at backend.

Reviewed By: asbirlea, rnk

Differential Revision: https://reviews.llvm.org/D78659
2020-05-12 16:49:20 -07:00
Matthias Schiffer
9b7ae59cc5 [LangRef] Describe linkage types, allocation size of declarations for global variables
Linkage type was only referenced for functions, not for global
variables.

Clarify that LLVM doesn't make assumption about the allocation size when
no definitive initializer for a global variable is known.

Differential Revision: https://reviews.llvm.org/D78952
2020-05-08 16:21:30 -07:00
Stanislav Mekhanoshin
965e88e480 [AMDGPU] Added 'a' constraint documentation. NFC.
AGPR inline asm constraint was missing from the LangRef.rst.
2020-05-05 13:52:04 -07:00
Sanjay Patel
639da4fda8 [ValueTracking] fix CannotBeNegativeZero() to disregard 'nsz' FMF
The 'nsz' flag is different than 'nnan' or 'ninf' in that it does not create poison.
Make that explicit in the LangRef and fix ValueTracking analysis that misinterpreted
the definition.

This manifests as bugs in InstSimplify shown in the test diffs and as discussed in
PR45778:
https://bugs.llvm.org/show_bug.cgi?id=45778

Differential Revision: https://reviews.llvm.org/D79422
2020-05-05 16:04:59 -04:00
Arthur Eubanks
0d7675c47c Add IR constructs for preallocated (inalloca replacement)
Add llvm.call.preallocated.{setup,arg} instrinsics.
Add "preallocated" operand bundle which takes a token produced by llvm.call.preallocated.setup.
Add "preallocated" parameter attribute, which is like byval but without the copy.

Verifier changes for these IR constructs.

See https://github.com/rnk/llvm-project/blob/call-setup-docs/llvm/docs/CallSetup.md

Subscribers: hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74651
2020-04-27 16:15:50 -07:00
James Y Knight
97a871041e Change callbr to only define its output SSA variable on the normal
path, not the indirect targets.

Fixes: PR45565.

Differential Revision: https://reviews.llvm.org/D78341
2020-04-23 19:36:44 -04:00
Kazuaki Ishizaki
7ce19394dc [llvm] NFC: Fix trivial typo in rst and td files
Differential Revision: https://reviews.llvm.org/D77469
2020-04-23 14:26:32 +09:00
Serge Pavlov
4088931555 [FPEnv] Use single enum to represent rounding mode
Now compiler defines 5 sets of constants to represent rounding mode.
These are:

1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.

2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.

3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.

4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.

5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.

The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.

This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.

Differential Revision: https://reviews.llvm.org/D77379
2020-04-09 13:26:47 +07:00
Sanjay Patel
28cf40e4e3 [LangRef] update text for shufflevector
D72467 updated the shufflevector instruction to include a constant mask
rather than a mask operand. The LangRef text was vague enough to still
make sense, but it is better to update here too, so there's no confusion
about valid mask values. The text here is adapted from the documentation
code comments for "class ShuffleVectorInst".

Differential Revision: https://reviews.llvm.org/D77396
2020-04-08 09:01:01 -04:00
Johannes Doerfert
379b7f812c [LangRef][AliasAnalysis] Clarify noalias affects only modified objects
We already mention that `noalias` is modeled after the C99 `restrict`
qualifier but we did omit one important requirement in the description.
For the restrict guarantees the object affected has to be modified
during the execution of the function, in any way (see 6.7.3.1.4 in [0]).

There are two reasons we want this restriction as well:
  1) To match the `restrict` semantics when we lower it to `noalias`.
  2) To allow the reasoning that the object pointed to by a `noalias`
     pointer is not modified through means not derived from this
     pointer. Hence, following the uses of that pointer is sufficient
     to determine potential modifications.

The discussion on this came up as part of D73428. In that patch the
Attributor is taught to derive `noalias` for call site arguments based
on alias queries against objects that are accessed in the callee. This
is possible even if the pointer passed at the call site was "not-`noalias`".
To simplify the logic there *and* to allow the use of `noalias` as
described in 2) above, it is beneficial to follow the C `restrict`
semantics in cases where there might be "read-read-aliases". Note that
 AliasAnalysis* queries for read only objects already result in
 `NoAlias` even if the pointers might "alias".

 * From this point of view our Alias Analysis is basically a Dependence
   Analysis.

[0] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D74935
2020-04-01 20:40:55 -05:00
Juneyoung Lee
2cd7fcb259 [LangRef] Clarify the semantics of branch on undef
Summary:
This patch clarifies the semantics of branching on undef value.

Defining `br undef` as undefined behavior explains optimizations that use branch conditions, such as CVP (D76931) and GVN (propagateEquality).

For `switch cond`, it is defined to raise UB if cond is an expression containing undef && cond is not frozen &&
it may yield different values.
This allows that at the destination block the branch condition can be assumed to be frozen already (otherwise UB was already triggered).
This condition is slightly stricter than MemorySanitizer, which allows undef-y condition if it always leads to the same destination,
but it does not break MemorySanitizer because we are giving stricter constraint.

Reviewers: efriedma, fhahn, nikic, spatel, jdoerfert, nlopes

Reviewed By: nlopes

Subscribers: regehr, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D76973
2020-03-30 11:41:47 +09:00
Sylvestre Ledru
8598ae94d7 Doc: Links should use https 2020-03-22 22:49:33 +01:00
Simon Moll
4405e5770f [VP,Integer,#1] Vector-predicated integer intrinsics
Summary:
This patch adds IR intrinsics for vector-predicated integer arithmetic.

It is subpatch #1 of the [integer
slice](https://reviews.llvm.org/D57504#1732277) of
[LLVM-VP](https://reviews.llvm.org/D57504).  LLVM-VP is a larger effort to bring
native vector predication to LLVM.

Reviewed By: andrew.w.kaylor

Differential Revision: https://reviews.llvm.org/D69891
2020-03-19 10:51:47 +01:00
Sanjay Patel
a66aea4c4a [LangRef] fix typo in select poison explanation; NFC 2020-03-18 18:59:14 -04:00
Sanjay Patel
e105b58d18 [LangRef] fix formatting tick; NFC 2020-03-18 17:26:41 -04:00
Sanjay Patel
974ee9c8a4 [LangRef] add explanatory text for select poison semantics (PR20895)
This is copied from the suggested text by @regehr in:
https://bugs.llvm.org/show_bug.cgi?id=20895

The way forward was not clear for several years, but now that we
have 'freeze' and Alive2, the behavior should be documented.
Also see comments in D76332.
2020-03-18 17:17:20 -04:00
Arlo Siemsen
b4fdb7e0c8 Add support for SHA256 source file checksums in debug info
LLVM currently supports CSK_MD5 and CSK_SHA1 source file checksums in
debug info. This change adds support for CSK_SHA256 checksums.

The SHA256 checksums are supported by the CodeView debug format.

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D75785
2020-03-12 16:32:05 -07:00
Tyker
43346d7e59 Basis of dropping uses in llvm.assume.
Summary: This patch adds the basic utilities to deal with dropable uses. dropable uses are uses that we rather drop than prevent transformations, for now they are limited to uses in llvm.assume.

Reviewers: jdoerfert, sstefan1

Reviewed By: jdoerfert

Subscribers: uenoku, lebedev.ri, mgorny, hiraditya, dexonsmith, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73404
2020-03-12 10:10:22 +01:00
JF Bastien
11b6dfb970 Test that volatile load type isn't changed
Summary: As discussed in D75505, it's not particularly useful to change the type of a load to/from floating-point/integer because it's followed by a bitcast, and it might lead to surprising code generation. Check that this doesn't generally happen.

Reviewers: lebedev.ri

Subscribers: jkorous, dexonsmith, ributzka, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75644
2020-03-09 11:19:23 -07:00
Bill Wendling
ffaf238dd0 Allow "callbr" to return non-void values
Summary:
Terminators in LLVM aren't prohibited from returning values. This means that
the "callbr" instruction, which is used for "asm goto", can support "asm goto
with outputs."

This patch removes all restrictions against "callbr" returning values. The
heavy lifting is done by the code generator. The "INLINEASM_BR" instruction's
a terminator, and the code generator doesn't allow non-terminator instructions
after a terminator. In order to correctly model the feature, we need to copy
outputs from "INLINEASM_BR" into virtual registers. Of course, those copies
aren't terminators.

To get around this issue, we split the block containing the "INLINEASM_BR"
right before the "COPY" instructions. This results in two cheats:

  - Any physical registers defined by "INLINEASM_BR" need to be marked as
    live-in into the block with the "COPY" instructions. This violates an
    assumption that physical registers aren't marked as "live-in" until after
    register allocation. But it seems as if the live-in information only
    needs to be correct after register allocation. So we're able to get away
    with this.

  - The indirect branches from the "INLINEASM_BR" are moved to the "COPY"
    block. This is to satisfy PHI nodes.

I've been told that MLIR can support this handily, but until we're able to
use it, we'll have to stick with the above.

Reviewers: jyknight, nickdesaulniers, hfinkel, MaskRay, lattner

Reviewed By: nickdesaulniers, MaskRay, lattner

Subscribers: rriddle, qcolombet, jdoerfert, MatzeB, echristo, MaskRay, xbolva00, aaron.ballman, cfe-commits, JonChesterfield, hiraditya, llvm-commits, rnk, craig.topper

Tags: #llvm, #clang

Differential Revision: https://reviews.llvm.org/D69868
2020-02-24 18:29:06 -08:00
Bevin Hansson
4f8b0d2f56 [Intrinsic] Add fixed point saturating division intrinsics.
Summary:
This patch adds intrinsics and ISelDAG nodes for signed
and unsigned fixed-point division:

```
llvm.sdiv.fix.sat.*
llvm.udiv.fix.sat.*
```

These intrinsics perform scaled, saturating division
on two integers or vectors of integers. They are
required for the implementation of the Embedded-C
fixed-point arithmetic in Clang.

Reviewers: bjope, leonardchan, craig.topper

Subscribers: hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71550
2020-02-24 10:50:52 +01:00
Tyker
797dfd61ae [AssumeBundle] Add documentation for the operand bundles of an llvm.assume
Summary:
Operand bundles on an llvm.assume allows representing
assumptions that an attribute holds for a certain value at a certain position.
Operand bundles enable assumptions that are either hard or impossible to
represent as a boolean argument of an llvm.assume.

Reviewers: jdoerfert, fhahn, nlopes, reames, regehr, efriedma

Reviewed By: jdoerfert

Subscribers: lebedev.ri, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74209
2020-02-19 18:53:15 +01:00
David Tenty
d8d2de7471 [clang][XCOFF] Indicate that XCOFF does not support COMDATs
Summary: XCOFF doesn't support COMDATs, so clang shouldn't emit them.

Reviewers: stevewan, sfertile, Xiangling_L

Reviewed By: sfertile

Subscribers: dschuff, aheejin, dexonsmith, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74631
2020-02-18 16:10:11 -05:00
Francesco Petrogalli
0612ebecbb [llvm][lldb] Update links to ABI for the Arm Architecture. [NFC] 2020-02-13 14:57:53 +00:00
David Blaikie
f21a88cbf6 IR Linking: Support merging Warning+Max module metadata flags
Summary:
Debug Info Version was changed to use "Max" instead of "Warning" per the
original design intent - but this maxes old/new IR unlinkable, since
mismatched merge styles are a linking failure.

It seems possible/maybe reasonable to actually support the combination
of these two flags: Warn, but then use the maximum value rather than the
first value/earlier module's value.

Reviewers: tejohnson

Differential Revision: https://reviews.llvm.org/D74257
2020-02-07 16:29:58 -08:00
Matt Arsenault
0e9ab3b9f6 Separately track input and output denormal mode
AMDGPU and x86 at least both have separate controls for whether
denormal results are flushed on output, and for whether denormals are
implicitly treated as 0 as an input. The current DAGCombiner use only
really cares about the input treatment of denormals.
2020-02-04 12:59:21 -05:00
Cameron McInally
1f64f59a06 [NFC][LangRef][FPEnv] Fix whitespace for denormal-fp-math/denormal-fp-math-f32
Fix incorrect spacing for `denormal-fp-math` and `denormal-fp-math-f32`. No
other changes.
2020-02-04 11:21:03 -06:00
Francesco Petrogalli
87965b5f59 [llvm][docs] Fix formatting in LangRef. [NFC]
The syntax of the call site attribute "vector-function-abi-variant"
is rendered with fixed size fonts (verbatim text).
2020-01-29 22:32:11 -06:00
Francesco Petrogalli
35b4d14b7d [llvm][docs] LangRef for IR attribute vector-function-abi-variant.
Reviewers: jdoerfert, andwar, simoll, rengolin, hfinkel, xtian

Reviewed By: jdoerfert

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72798
2020-01-29 17:03:05 +00:00
Wang, Pengfei
f83f5a6e3c Fix sphinx build bot failure. NFCI. 2020-01-28 22:07:34 +08:00
Wang, Pengfei
5a4cadf22e [FPEnv] Add pragma FP_CONTRACT support under strict FP.
Summary: Support pragma FP_CONTRACT under strict FP.

Reviewers: craig.topper, andrew.w.kaylor, uweigand, RKSimon, LiuChen3

Subscribers: hiraditya, jdoerfert, cfe-commits, llvm-commits, LuoYuanke

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72820
2020-01-28 20:43:43 +08:00
Benjamin Kramer
af311296b9 [docs] Clarify llvm.used semantics with less awkward wording 2020-01-28 12:13:57 +01:00
Guillaume Chatelet
1afb32cf33 [instrinsics] Add @llvm.memcpy.inline instrinsics
Summary:
This is a follow up on D61634. It adds an LLVM IR intrinsic to allow better implementation of memcpy from C++.
A follow up CL will add the intrinsics in Clang.

Reviewers: courbet, theraven, t.p.northover, jdoerfert, tejohnson

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71710
2020-01-28 09:42:01 +01:00
Guillaume Chatelet
5d96838bf7 [IR] masked gather/scatter alignment should be set
Summary: masked_load and masked_store instructions require the alignment to be specified and a power of two. It seems to me that this requirement applies to masked_gather and masked_scatter as well.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73179
2020-01-26 18:51:36 +01:00
Sander de Smalen
c07e22a824 Add support for (expressing) vscale.
In LLVM IR, vscale can be represented with an intrinsic. For some targets,
this is equivalent to the constexpr:

  getelementptr <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1

This can be used to propagate the value in CodeGenPrepare.

In ISel we add a node that can be legalized to one or more
instructions to materialize the runtime vector length.

This patch also adds SVE CodeGen support for VSCALE, which maps this
node to RDVL instructions (for scaled multiples of 16bytes) or CNT[HSD]
instructions (scaled multiples of 2, 4, or 8 bytes, respectively).

Reviewers: rengolin, cameron.mcinally, hfinkel, sebpop, SjoerdMeijer, efriedma, lattner

Reviewed by: efriedma

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68203
2020-01-22 10:09:27 +00:00
Guillaume Chatelet
e1fb81280e [Doc] Update requirements for masked load/store 2020-01-22 10:42:37 +01:00
Kazuaki Ishizaki
09203c3fb4 [llvm] NFC: fix trivial typos in documents
Reviewers: hans, Jim

Reviewed By: Jim

Subscribers: jvesely, nhaehnle, mgorny, arphaman, bmahjour, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73017
2020-01-22 11:32:51 +08:00
Matt Arsenault
857d566359 Consolidate internal denormal flushing controls
Currently there are 4 different mechanisms for controlling denormal
flushing behavior, and about as many equivalent frontend controls.

- AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features
- NVPTX uses the nvptx-f32ftz attribute
- ARM directly uses the denormal-fp-math attribute
- Other targets indirectly use denormal-fp-math in one DAGCombine
- cl-denorms-are-zero has a corresponding denorms-are-zero attribute

AMDGPU wants a distinct control for f32 flushing from f16/f64, and as
far as I can tell the same is true for NVPTX (based on the attribute
name).

Work on consolidating these into the denormal-fp-math attribute, and a
new type specific denormal-fp-math-f32 variant. Only ARM seems to
support the two different flush modes, so this is overkill for the
other use cases. Ideally we would error on the unsupported
positive-zero mode on other targets from somewhere.

Move the logic for selecting the flush mode into the compiler driver,
instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32
are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as
a user flag.

-cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and
-fno-cuda-flush-denormals-to-zero will be mapped to
-fp-denormal-math-f32=ieee or preserve-sign rather than the old
attributes.

Stop emitting the denorms-are-zero attribute for the OpenCL flag. It
has no in-tree users. The meaning would also be target dependent, such
as the AMDGPU choice to treat this as only meaning allow flushing of
f32 and not f16 or f64. The naming is also potentially confusing,
since DAZ in other contexts refers to instructions implicitly treating
input denormals as zero, not necessarily flushing output denormals to
zero.

This also does not attempt to change the behavior for the current
attribute. The LangRef now states that the default is ieee behavior,
but this is inaccurate for the current implementation. The clang
handling is slightly hacky to avoid touching the existing
denormal-fp-math uses. Fixing this will be left for a future patch.

AMDGPU is still using the subtarget feature to control the denormal
mode, but the new attribute are now emitted. A future change will
switch this and remove the subtarget features.
2020-01-17 20:09:53 -05:00
Bevin Hansson
21be0de34d [Intrinsic] Add fixed point division intrinsics.
Summary:
This patch adds intrinsics and ISelDAG nodes for
signed and unsigned fixed-point division:

  llvm.sdiv.fix.*
  llvm.udiv.fix.*

These intrinsics perform scaled division on two
integers or vectors of integers. They are required
for the implementation of the Embedded-C fixed-point
arithmetic in Clang.

Patch by: ebevhan

Reviewers: bjope, leonardchan, efriedma, craig.topper

Reviewed By: craig.topper

Subscribers: Ka-Ka, ilya, hiraditya, jdoerfert, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70007
2020-01-08 15:17:46 +01:00
Bill Wendling
77dae6a102 Revert "Allow output constraints on "asm goto""
This reverts commit 52366088a8e42c2f1e96e8430b84b8b65ec3f7bc.

I accidentally pushed this before supporting changes.
2020-01-07 13:44:08 -08:00
Bill Wendling
1e81c3e696 Allow output constraints on "asm goto"
Summary:
Remove the restrictions that preventing "asm goto" from returning non-void
values. The values returned by "asm goto" are only valid on the "fallthrough"
path.

Reviewers: jyknight, nickdesaulniers, hfinkel

Reviewed By: jyknight, nickdesaulniers

Subscribers: rsmith, hiraditya, llvm-commits, cfe-commits, craig.topper, rnk

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D69876
2020-01-07 13:40:26 -08:00
Hans Wennborg
c7ebd85525 [docs] NFC: Fix typos in documents
"the the" -> "the"
"an" -> "a"

Patch by Kazuaki Ishizaki <ishizaki@jp.ibm.com>!

Differential revision: https://reviews.llvm.org/D72091
2020-01-07 16:06:14 +01:00
Luís Marques
9c9c4dfafa [RISCV][Docs] Add RISC-V asm template argument modifiers
Adds the RISC-V asm template argument modifiers currently supported by LLVM.
Additional ones supported by GCC will be added to the documentation when we
start supporting them.
2020-01-07 11:06:46 +00:00
Florian Hahn
f4d0b20ca5 [Docs] Fix sphinx build errors. 2019-12-23 21:53:30 +01:00
Ulrich Weigand
924e626fc4 [FPEnv] Strict versions of llvm.minimum/llvm.maximum
Add new intrinsics
   llvm.experimental.constrained.minimum
   llvm.experimental.constrained.maximum
as strict versions of llvm.minimum and llvm.maximum.

Includes SystemZ back-end support.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D71624
2019-12-18 21:35:28 +01:00
Ulrich Weigand
527a7ef69a [FPEnv] Remove unnecessary rounding mode argument for constrained intrinsics
The following intrinsics currently carry a rounding mode metadata argument:

    llvm.experimental.constrained.minnum
    llvm.experimental.constrained.maxnum
    llvm.experimental.constrained.ceil
    llvm.experimental.constrained.floor
    llvm.experimental.constrained.round
    llvm.experimental.constrained.trunc

This is not useful since the semantics of those intrinsics do not in any way
depend on the rounding mode. In similar cases, other constrained intrinsics
do not have the rounding mode argument. Remove it here as well.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D71218
2019-12-17 21:10:36 +01:00
Kevin P. Neal
ad46a5663d This adds constrained intrinsics for the signed and unsigned conversions
of integers to floating point.

This includes some of Craig Topper's changes for promotion support from
D71130.

Differential Revision: https://reviews.llvm.org/D69275
2019-12-17 10:06:51 -05:00
Dmitri Gribenko
fe73bb9ea4 Fix title underline in LangRef
The docs didn't compile:
http://lab.llvm.org:8011/builders/llvm-sphinx-docs/builds/38906
2019-12-16 09:05:13 +01:00
Florian Hahn
1643768c5c [Matrix] Add first set of matrix intrinsics and initial lowering pass.
This is the first patch adding an initial set of matrix intrinsics and a
corresponding lowering pass. This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2019-October/136240.html

The first patch introduces four new intrinsics (transpose, multiply,
columnwise load and store) and a LowerMatrixIntrinsics pass, that
lowers those intrinsics to vector operations.

Matrixes are embedded in a 'flat' vector (e.g. a 4 x 4 float matrix
embedded in a <16 x float> vector) and the intrinsics take the dimension
information as parameters. Those parameters need to be ConstantInt.
For the memory layout, we initially assume column-major, but in the RFC
we also described how to extend the intrinsics to support row-major as
well.

For the initial lowering, we split the input of the intrinsics into a
set of column vectors, transform those column vectors and concatenate
the result columns to a flat result vector.

This allows us to lower the intrinsics without any shape propagation, as
mentioned in the RFC. In follow-up patches, we plan to submit the
following improvements:
 * Shape propagation to eliminate the embedding/splitting for each
   intrinsic.
 * Fused & tiled lowering of multiply and other operations.
 * Optimization remarks highlighting matrix expressions and costs.
 * Generate loops for operations on large matrixes.
 * More general block processing for operation on large vectors,
   exploiting shape information.

We would like to add dedicated transpose, columnwise load and store
intrinsics, even though they are not strictly necessary. For example, we
could instead emit a large shufflevector instruction instead of the
transpose. But we expect that to
  (1) become unwieldy for larger matrixes (even for 16x16 matrixes,
      the resulting shufflevector masks would be huge),
  (2) risk instcombine making small changes, causing us to fail to
      detect the transpose, preventing better lowerings

For the load/store, we are additionally planning on exploiting the
intrinsics for better alias analysis.

Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor, efriedma, rengolin

Reviewed By: anemet

Differential Revision: https://reviews.llvm.org/D70456
2019-12-12 15:42:18 +00:00
Ulrich Weigand
b5b6e8e953 [FPEnv] Constrained FCmp intrinsics
This adds support for constrained floating-point comparison intrinsics.

Specifically, we add:

      declare <ty2>
      @llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
                                          metadata <condition code>,
                                          metadata <exception behavior>)
      declare <ty2>
      @llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
                                           metadata <condition code>,
                                           metadata <exception behavior>)

The first variant implements an IEEE "quiet" comparison (i.e. we only
get an invalid FP exception if either argument is a SNaN), while the
second variant implements an IEEE "signaling" comparison (i.e. we get
an invalid FP exception if either argument is any NaN).

The condition code is implemented as a metadata string.  The same set
of predicates as for the fcmp instruction is supported (except for the
"true" and "false" predicates).

These new intrinsics are mapped by SelectionDAG codegen onto two new
ISD opcodes, ISD::STRICT_FSETCC and ISD::STRICT_FSETCCS, again
representing quiet vs. signaling comparison operations.  Otherwise
those nodes look like SETCC nodes, with an additional chain argument
and result as usual for strict FP nodes.  The patch includes support
for the common legalization operations for those nodes.

The patch also includes full SystemZ back-end support for the new
ISD nodes, mapping them to all available SystemZ instruction to
fully implement strict semantics (scalar and vector).

Differential Revision: https://reviews.llvm.org/D69281
2019-12-07 11:28:39 +01:00
Sanjay Patel
ea976e9c1e [LangRef] make per-element poison behavior explicit
As discussed in D70246 and PR43958:
https://bugs.llvm.org/show_bug.cgi?id=43958

The LangRef seems ambiguous about the behavior of poison with respect
to vectors.

We could go further with text and/or examples - suggestions welcome.

Also, see discussion on llvm-dev;
http://lists.llvm.org/pipermail/llvm-dev/2019-November/137243.html

Differential Revision: https://reviews.llvm.org/D70641
2019-12-04 15:32:19 -05:00
Djordje Todorovic
a84a1220f4 [DebugInfo] Remove the DIFlagArgumentNotModified debug info flag
Due to changes in D68206, we remove the DIFlagArgumentNotModified
and its usage.

Differential Revision: https://reviews.llvm.org/D68207
2019-11-20 13:18:40 +01:00
Kevin P. Neal
2dbca15279 Document more specifically the rounding for "llvm.round".
Differential Revision: https://reviews.llvm.org/D68810
2019-11-14 13:15:15 -05:00
Kevin P. Neal
592d69a8a6 Make the language more consistent since I'm about to commit a content
change next.
2019-11-14 13:10:59 -05:00
Nuno Lopes
cfbe9609f3 docs: fix warning in LangRef parsing 2019-11-11 10:45:42 +00:00
Daniel Sanders
6cdb5ec3bc [globalisel][docs] Rework GMIR documentation and add an early GenericOpcode reference
Summary:
Rework the GMIR documentation to focus more on the end user than the
implementation and tie it in to the MIR document. There was also some
out-of-date information which has been removed.

The quality of the GenericOpcode reference is highly variable and drops
sharply as I worked through them all but we've got to start somewhere :-).
It would be great if others could expand on this too as there is an awful
lot to get through.

Also fix a typo in the definition of G_FLOG. Previously, the comments said
we had two base-2's (G_FLOG and G_FLOG2).

Reviewers: aemerson, volkan, rovka, arsenm

Reviewed By: rovka

Subscribers: wdng, arphaman, jfb, Petar.Avramovic, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69545
2019-11-05 15:16:43 -08:00
Nuno Lopes
105e48e377 [Docs] Add LangRef documentation for freeze instruction
Summary:
 - Describe the new freeze instruction
 - Make it explicit that branch on undef/poison is UB

Reviewers: chandlerc, majnemer, efriedma, nikic, reames, jdoerfert, lebedev.ri, regehr

Subscribers: fhahn, bollu, lebedev.ri, delcypher, spatel, filcab, llvm-commits, aqjune

Differential Revision: https://reviews.llvm.org/D29121
2019-11-05 11:35:55 +00:00
Amy Huang
68fcd6e209 Recommit "[CodeView] Add option to disable inline line tables."
This reverts commit 004ed2b0d1b86d424643ffc88fce20ad8bab6804.
Original commit hash 6d03890384517919a3ba7fe4c35535425f278f89

Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.

https://reviews.llvm.org/D67723
2019-11-04 09:15:26 -08:00
Stefan Stipanovic
4e04be8943 NoFree argument attribute.
Summary: Deducing nofree atrribute for function arguments.

Reviewers: jdoerfert

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67886
2019-11-02 19:40:48 +01:00
Stefan Stipanovic
8973a4b594 Revert "NoFree argument attribute."
This reverts commit c12efa2ed0547f7f9f8fba0ad7a76a4cb08bf53a.
2019-11-02 17:31:02 +01:00
Stefan Stipanovic
e0f934d786 NoFree argument attribute.
Summary: Deducing nofree atrribute for function arguments.

Reviewers: jdoerfert

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D67886
2019-11-02 16:35:38 +01:00