1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Target/X86/X86InstrArithmetic.td

1383 lines
65 KiB
TableGen
Raw Normal View History

//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the integer arithmetic instructions in the X86
// architecture.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LEA - Load Effective Address
let SchedRW = [WriteLEA] in {
let hasSideEffects = 0 in
def LEA16r : I<0x8D, MRMSrcMem,
(outs GR16:$dst), (ins anymem:$src),
"lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize16;
let isReMaterializable = 1 in
def LEA32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins anymem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)], IIC_LEA>,
OpSize32, Requires<[Not64BitMode]>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>,
OpSize32, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)], IIC_LEA>;
} // SchedRW
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions.
//
// SchedModel info for instruction that loads one value and gets the second
// (and possibly third) value from a register.
// This is used for instructions that put the memory operands before other
// uses.
class SchedLoadReg<SchedWrite SW> : Sched<[SW,
// Memory operand.
ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
// Register reads (implicit or explicit).
ReadAfterLd, ReadAfterLd]>;
// Extra precision multiplication
// AL is really implied by AX, but the registers in Defs must match the
// SDNode results (i8, i32).
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)),
(implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
"mul{w}\t$src",
[], IIC_MUL16_REG>, OpSize16, Sched<[WriteIMul]>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
"mul{l}\t$src",
[/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/],
IIC_MUL32_REG>, OpSize32, Sched<[WriteIMul]>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
"mul{q}\t$src",
[/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/],
IIC_MUL64>, Sched<[WriteIMul]>;
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
"mul{b}\t$src",
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, (loadi8 addr:$src))),
(implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>;
// AX,DX = AX*[mem16]
let mayLoad = 1, hasSideEffects = 0 in {
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
"mul{w}\t$src",
[], IIC_MUL16_MEM>, OpSize16, SchedLoadReg<WriteIMulLd>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
"mul{l}\t$src",
[], IIC_MUL32_MEM>, OpSize32, SchedLoadReg<WriteIMulLd>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
"mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>,
Requires<[In64BitMode]>;
}
let hasSideEffects = 0 in {
// AL,AH = AL*GR8
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [],
IIC_IMUL8>, Sched<[WriteIMul]>;
// AX,DX = AX*GR16
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [],
IIC_IMUL16_RR>, OpSize16, Sched<[WriteIMul]>;
// EAX,EDX = EAX*GR32
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [],
IIC_IMUL32_RR>, OpSize32, Sched<[WriteIMul]>;
// RAX,RDX = RAX*GR64
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [],
IIC_IMUL64_RR>, Sched<[WriteIMul]>;
let mayLoad = 1 in {
// AL,AH = AL*[mem8]
let Defs = [AL,EFLAGS,AX], Uses = [AL] in
def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
"imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>;
// AX,DX = AX*[mem16]
let Defs = [AX,DX,EFLAGS], Uses = [AX] in
def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
"imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize16,
SchedLoadReg<WriteIMulLd>;
// EAX,EDX = EAX*[mem32]
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
"imul{l}\t$src", [], IIC_IMUL32_MEM>, OpSize32,
SchedLoadReg<WriteIMulLd>;
// RAX,RDX = RAX*[mem64]
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
"imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>,
Requires<[In64BitMode]>;
}
} // hasSideEffects
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = 1, SchedRW = [WriteIMul] in {
// X = IMUL Y, Z --> X = IMUL Z, Y
// Register-Register Signed Integer Multiply
def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
"imul{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>,
TB, OpSize16;
def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
"imul{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>,
TB, OpSize32;
def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src1, GR64:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>,
TB;
} // isCommutable, SchedRW
// Register-Memory Signed Integer Multiply
let SchedRW = [WriteIMulLd, ReadAfterLd] in {
def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$src1, i16mem:$src2),
"imul{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, (load addr:$src2)))],
IIC_IMUL16_RM>,
TB, OpSize16;
def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src1, i32mem:$src2),
"imul{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, (load addr:$src2)))],
IIC_IMUL32_RM>,
TB, OpSize32;
def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src1, i64mem:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag GR64:$src1, (load addr:$src2)))],
IIC_IMUL64_RM>,
TB;
} // SchedRW
} // Constraints = "$src1 = $dst"
} // Defs = [EFLAGS]
// Surprisingly enough, these are not two address instructions!
let Defs = [EFLAGS] in {
let SchedRW = [WriteIMul] in {
// Register-Integer Signed Integer Multiply
def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, imm:$src2))],
IIC_IMUL16_RRI>, OpSize16;
def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag GR16:$src1, i16immSExt8:$src2))],
IIC_IMUL16_RRI>, OpSize16;
def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, imm:$src2))],
IIC_IMUL32_RRI>, OpSize32;
def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag GR32:$src1, i32immSExt8:$src2))],
IIC_IMUL32_RRI>, OpSize32;
def IMUL64rri32 : RIi32S<0x69, MRMSrcReg, // GR64 = GR64*I32
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag GR64:$src1, i64immSExt32:$src2))],
IIC_IMUL64_RRI>;
def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag GR64:$src1, i64immSExt8:$src2))],
IIC_IMUL64_RRI>;
} // SchedRW
// Memory-Integer Signed Integer Multiply
let SchedRW = [WriteIMulLd] in {
def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
(outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag (load addr:$src1), imm:$src2))],
IIC_IMUL16_RMI>,
OpSize16;
def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
(outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
"imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR16:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i16immSExt8:$src2))], IIC_IMUL16_RMI>,
OpSize16;
def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
(outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag (load addr:$src1), imm:$src2))],
IIC_IMUL32_RMI>, OpSize32;
def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
(outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
"imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR32:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i32immSExt8:$src2))],
IIC_IMUL32_RMI>, OpSize32;
def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem, // GR64 = [mem64]*I32
(outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i64immSExt32:$src2))],
IIC_IMUL64_RMI>;
def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
(outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, EFLAGS,
(X86smul_flag (load addr:$src1),
i64immSExt8:$src2))],
IIC_IMUL64_RMI>;
} // SchedRW
} // Defs = [EFLAGS]
// unsigned division/remainder
let hasSideEffects = 1 in { // so that we don't speculatively execute
let SchedRW = [WriteIDiv] in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
"div{b}\t$src", [], IIC_DIV8_REG>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
"div{w}\t$src", [], IIC_DIV16>, OpSize16;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
"div{l}\t$src", [], IIC_DIV32>, OpSize32;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
"div{q}\t$src", [], IIC_DIV64>;
} // SchedRW
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
"div{b}\t$src", [], IIC_DIV8_MEM>,
SchedLoadReg<WriteIDivLd>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
"div{w}\t$src", [], IIC_DIV16>, OpSize16,
SchedLoadReg<WriteIDivLd>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
"div{l}\t$src", [], IIC_DIV32>,
SchedLoadReg<WriteIDivLd>, OpSize32;
// RDX:RAX/[mem64] = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
"div{q}\t$src", [], IIC_DIV64>,
SchedLoadReg<WriteIDivLd>, Requires<[In64BitMode]>;
}
// Signed division/remainder.
let SchedRW = [WriteIDiv] in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
"idiv{b}\t$src", [], IIC_IDIV8>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
"idiv{w}\t$src", [], IIC_IDIV16>, OpSize16;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
"idiv{l}\t$src", [], IIC_IDIV32>, OpSize32;
// RDX:RAX/r64 = RAX,RDX
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
"idiv{q}\t$src", [], IIC_IDIV64>;
} // SchedRW
let mayLoad = 1 in {
let Defs = [AL,AH,EFLAGS], Uses = [AX] in
def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
"idiv{b}\t$src", [], IIC_IDIV8>,
SchedLoadReg<WriteIDivLd>;
let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
"idiv{w}\t$src", [], IIC_IDIV16>, OpSize16,
SchedLoadReg<WriteIDivLd>;
let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
"idiv{l}\t$src", [], IIC_IDIV32>, OpSize32,
SchedLoadReg<WriteIDivLd>;
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
"idiv{q}\t$src", [], IIC_IDIV64>,
SchedLoadReg<WriteIDivLd>, Requires<[In64BitMode]>;
}
} // hasSideEffects = 0
//===----------------------------------------------------------------------===//
// Two address Instructions.
//
// unary instructions
let CodeSize = 2 in {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
"neg{b}\t$dst",
[(set GR8:$dst, (ineg GR8:$src1)),
(implicit EFLAGS)], IIC_UNARY_REG>;
def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
"neg{w}\t$dst",
[(set GR16:$dst, (ineg GR16:$src1)),
(implicit EFLAGS)], IIC_UNARY_REG>, OpSize16;
def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
"neg{l}\t$dst",
[(set GR32:$dst, (ineg GR32:$src1)),
(implicit EFLAGS)], IIC_UNARY_REG>, OpSize32;
def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
[(set GR64:$dst, (ineg GR64:$src1)),
(implicit EFLAGS)], IIC_UNARY_REG>;
} // Constraints = "$src1 = $dst", SchedRW
// Read-modify-write negate.
let SchedRW = [WriteALULd, WriteRMW] in {
def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
"neg{b}\t$dst",
[(store (ineg (loadi8 addr:$dst)), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
"neg{w}\t$dst",
[(store (ineg (loadi16 addr:$dst)), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
"neg{l}\t$dst",
[(store (ineg (loadi32 addr:$dst)), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
[(store (ineg (loadi64 addr:$dst)), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>,
Requires<[In64BitMode]>;
} // SchedRW
} // Defs = [EFLAGS]
// Note: NOT does not set EFLAGS!
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
// Match xor -1 to not. Favors these over a move imm + xor to save code size.
let AddedComplexity = 15 in {
def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
"not{b}\t$dst",
[(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>;
def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
"not{w}\t$dst",
[(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize16;
def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
"not{l}\t$dst",
[(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>, OpSize32;
def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
[(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>;
}
} // Constraints = "$src1 = $dst", SchedRW
let SchedRW = [WriteALULd, WriteRMW] in {
def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
"not{b}\t$dst",
[(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>;
def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
"not{w}\t$dst",
[(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
OpSize16;
def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
"not{l}\t$dst",
[(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
OpSize32;
def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
[(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>,
Requires<[In64BitMode]>;
} // SchedRW
} // CodeSize
// TODO: inc/dec is slow for P4, but fast for Pentium-M.
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
let CodeSize = 2 in
def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
"inc{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))],
IIC_UNARY_REG>;
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
"inc{w}\t$dst",
[(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))],
IIC_UNARY_REG>, OpSize16;
def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
"inc{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))],
IIC_UNARY_REG>, OpSize32;
def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
[(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))],
IIC_UNARY_REG>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
"inc{w}\t$dst", [], IIC_UNARY_REG>,
OpSize16, Requires<[Not64BitMode]>;
def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
"inc{l}\t$dst", [], IIC_UNARY_REG>,
OpSize32, Requires<[Not64BitMode]>;
} // CodeSize = 1, hasSideEffects = 0
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
let Predicates = [UseIncDec] in {
def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
[(store (add (loadi8 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
[(store (add (loadi64 addr:$dst), 1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
} // Predicates
} // CodeSize = 2, SchedRW
let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
let CodeSize = 2 in
def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
"dec{b}\t$dst",
[(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))],
IIC_UNARY_REG>;
let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
"dec{w}\t$dst",
[(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))],
IIC_UNARY_REG>, OpSize16;
def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
"dec{l}\t$dst",
[(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))],
IIC_UNARY_REG>, OpSize32;
def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
[(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))],
IIC_UNARY_REG>;
} // isConvertibleToThreeAddress = 1, CodeSize = 2
// Short forms only valid in 32-bit mode. Selected during MCInst lowering.
let CodeSize = 1, hasSideEffects = 0 in {
def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
"dec{w}\t$dst", [], IIC_UNARY_REG>,
OpSize16, Requires<[Not64BitMode]>;
def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
"dec{l}\t$dst", [], IIC_UNARY_REG>,
OpSize32, Requires<[Not64BitMode]>;
} // CodeSize = 1, hasSideEffects = 0
} // Constraints = "$src1 = $dst", SchedRW
let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in {
let Predicates = [UseIncDec] in {
def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
[(store (add (loadi8 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize16;
def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>, OpSize32;
} // Predicates
let Predicates = [UseIncDec, In64BitMode] in {
def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
[(store (add (loadi64 addr:$dst), -1), addr:$dst),
(implicit EFLAGS)], IIC_UNARY_MEM>;
} // Predicates
} // CodeSize = 2, SchedRW
} // Defs = [EFLAGS]
/// X86TypeInfo - This is a bunch of information that describes relevant X86
/// information about value types. For example, it can tell you what the
/// register class and preferred load to use.
class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
Operand immoperand, SDPatternOperator immoperator,
Operand imm8operand, SDPatternOperator imm8operator,
bit hasOddOpcode, OperandSize opSize,
bit hasREX_WPrefix> {
/// VT - This is the value type itself.
ValueType VT = vt;
/// InstrSuffix - This is the suffix used on instructions with this type. For
/// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
string InstrSuffix = instrsuffix;
/// RegClass - This is the register class associated with this type. For
/// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
RegisterClass RegClass = regclass;
/// LoadNode - This is the load node associated with this type. For
/// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
PatFrag LoadNode = loadnode;
/// MemOperand - This is the memory operand associated with this type. For
/// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
X86MemOperand MemOperand = memoperand;
/// ImmEncoding - This is the encoding of an immediate of this type. For
/// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
/// since the immediate fields of i64 instructions is a 32-bit sign extended
/// value.
ImmType ImmEncoding = immkind;
/// ImmOperand - This is the operand kind of an immediate of this type. For
/// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
/// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
/// extended value.
Operand ImmOperand = immoperand;
/// ImmOperator - This is the operator that should be used to match an
/// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
SDPatternOperator ImmOperator = immoperator;
/// Imm8Operand - This is the operand kind to use for an imm8 of this type.
/// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
/// only used for instructions that have a sign-extended imm8 field form.
Operand Imm8Operand = imm8operand;
/// Imm8Operator - This is the operator that should be used to match an 8-bit
/// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
SDPatternOperator Imm8Operator = imm8operator;
/// HasOddOpcode - This bit is true if the instruction should have an odd (as
/// opposed to even) opcode. Operations on i8 are usually even, operations on
/// other datatypes are odd.
bit HasOddOpcode = hasOddOpcode;
/// OpSize - Selects whether the instruction needs a 0x66 prefix based on
/// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this
/// to Opsize16. i32 sets this to OpSize32.
OperandSize OpSize = opSize;
/// HasREX_WPrefix - This bit is set to true if the instruction should have
/// the 0x40 REX prefix. This is set for i64 types.
bit HasREX_WPrefix = hasREX_WPrefix;
}
def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
def Xi8 : X86TypeInfo<i8, "b", GR8, loadi8, i8mem,
Imm8, i8imm, imm8_su, i8imm, invalid_node,
0, OpSizeFixed, 0>;
def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
Imm16, i16imm, imm16_su, i16i8imm, i16immSExt8_su,
1, OpSize16, 0>;
def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
Imm32, i32imm, imm32_su, i32i8imm, i32immSExt8_su,
1, OpSize32, 0>;
def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
Imm32S, i64i32imm, i64immSExt32_su, i64i8imm, i64immSExt8_su,
1, OpSizeFixed, 1>;
/// ITy - This instruction base class takes the type info for the instruction.
/// Using this, it:
/// 1. Concatenates together the instruction mnemonic with the appropriate
/// suffix letter, a tab, and the arguments.
/// 2. Infers whether the instruction should have a 0x66 prefix byte.
/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
/// or 1 (for i16,i32,i64 operations).
class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
string mnemonic, string args, list<dag> pattern,
InstrItinClass itin = IIC_BIN_NONMEM>
: I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
f, outs, ins,
!strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern,
itin> {
// Infer instruction prefixes from type info.
let OpSize = typeinfo.OpSize;
let hasREX_WPrefix = typeinfo.HasREX_WPrefix;
}
// BinOpRR - Instructions like "add reg, reg, reg".
class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, list<dag> pattern, InstrItinClass itin>
: ITy<opcode, MRMDestReg, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
Sched<[WriteALU]>;
// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
// just a EFLAGS as a result.
class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs),
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
IIC_BIN_NONMEM>;
// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
// both a regclass and EFLAGS as a result.
class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
IIC_BIN_NONMEM>;
// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
// both a regclass and EFLAGS as a result, and has EFLAGS as input.
class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
EFLAGS))], IIC_BIN_CARRY_NONMEM>;
// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
InstrItinClass itin = IIC_BIN_NONMEM>
: ITy<opcode, MRMSrcReg, typeinfo,
(outs typeinfo.RegClass:$dst),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}", [], itin>,
Sched<[WriteALU]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding).
class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: BinOpRR_Rev<opcode, mnemonic, typeinfo, IIC_BIN_CARRY_NONMEM>;
// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
: ITy<opcode, MRMSrcReg, typeinfo, (outs),
(ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>,
Sched<[WriteALU]> {
// The disassembler should know about this, but not the asmparser.
let isCodeGenOnly = 1;
let ForceDisassemble = 1;
let hasSideEffects = 0;
}
// BinOpRM - Instructions like "add reg, reg, [mem]".
class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
dag outlist, list<dag> pattern,
InstrItinClass itin = IIC_BIN_MEM>
: ITy<opcode, MRMSrcMem, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
Sched<[WriteALULd, ReadAfterLd]>;
// BinOpRM_F - Instructions like "cmp reg, [mem]".
class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs),
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
EFLAGS))], IIC_BIN_CARRY_MEM>;
// BinOpRI - Instructions like "add reg, reg, imm".
class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, list<dag> pattern,
InstrItinClass itin = IIC_BIN_NONMEM>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
Sched<[WriteALU]> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpRI_F - Instructions like "cmp reg, imm".
class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RF - Instructions like "add reg, reg, imm".
class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
EFLAGS))], IIC_BIN_CARRY_NONMEM>;
// BinOpRI8 - Instructions like "add reg, reg, imm8".
class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, dag outlist, list<dag> pattern,
InstrItinClass itin = IIC_BIN_NONMEM>
: ITy<opcode, f, typeinfo, outlist,
(ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>,
Sched<[WriteALU]> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpRI8_F - Instructions like "cmp reg, imm8".
class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
[(set EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
EFLAGS))], IIC_BIN_CARRY_NONMEM>;
// BinOpMR - Instructions like "add [mem], reg".
class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
list<dag> pattern, InstrItinClass itin = IIC_BIN_MEM>
: ITy<opcode, MRMDestMem, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
Sched<[WriteALULd, WriteRMW]>;
// BinOpMR_RMW - Instructions like "add [mem], reg".
class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
(implicit EFLAGS)]>;
// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
addr:$dst),
(implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
// BinOpMR_F - Instructions like "cmp [mem], reg".
class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode>
: BinOpMR<opcode, mnemonic, typeinfo,
[(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
// BinOpMI - Instructions like "add [mem], imm".
class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern,
InstrItinClass itin = IIC_BIN_MEM>
: ITy<opcode, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
Sched<[WriteALULd, WriteRMW]> {
let ImmT = typeinfo.ImmEncoding;
}
// BinOpMI_RMW - Instructions like "add [mem], imm".
class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src), addr:$dst),
(implicit EFLAGS)]>;
// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(store (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
(implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
// BinOpMI_F - Instructions like "cmp [mem], imm".
class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI<opcode, mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
typeinfo.ImmOperator:$src))]>;
// BinOpMI8 - Instructions like "add [mem], imm8".
class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
Format f, list<dag> pattern,
InstrItinClass itin = IIC_BIN_MEM>
: ITy<0x82, f, typeinfo,
(outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>,
Sched<[WriteALULd, WriteRMW]> {
let ImmT = Imm8; // Always 8-bit immediate.
}
// BinOpMI8_RMW - Instructions like "add [mem], imm8".
class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(store (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src), addr:$dst),
(implicit EFLAGS)]>;
// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(store (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
(implicit EFLAGS)], IIC_BIN_CARRY_MEM>;
// BinOpMI8_F - Instructions like "cmp [mem], imm8".
class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
SDPatternOperator opnode, Format f>
: BinOpMI8<mnemonic, typeinfo, f,
[(set EFLAGS, (opnode (load addr:$dst),
typeinfo.Imm8Operator:$src))]>;
// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands,
InstrItinClass itin = IIC_BIN_NONMEM>
: ITy<opcode, RawFrm, typeinfo,
(outs), (ins typeinfo.ImmOperand:$src),
mnemonic, operands, [], itin>, Sched<[WriteALU]> {
let ImmT = typeinfo.ImmEncoding;
let Uses = [areg];
let Defs = [areg, EFLAGS];
let hasSideEffects = 0;
}
// BinOpAI_RFF - Instructions like "adc %eax, %eax, imm", that implicitly define
// and use EFLAGS.
class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands,
IIC_BIN_CARRY_NONMEM> {
let Uses = [areg, EFLAGS];
}
// BinOpAI_F - Instructions like "cmp %eax, %eax, imm", that imp-def EFLAGS.
class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
Register areg, string operands>
: BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
let Defs = [EFLAGS];
}
/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (...".
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnodeflag, SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
} // isConvertibleToThreeAddress
} // isCommutable
[X86] Adding FoldGenRegForm helper field (for memory folding tables tableGen backend) to X86Inst class and set its value for the relevant instructions. Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately). For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual: Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description 8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8. 88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8. Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions. In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen. Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr. This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables. Differential Revision: https://reviews.llvm.org/D32683 llvm-svn: 304087
2017-05-28 14:39:37 +02:00
def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
}
} // Constraints = "$src1 = $dst"
let mayLoad = 1, mayStore = 1 in {
def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
}
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
/// SBB.
///
/// It would be nice to get rid of the second and third argument here, but
/// tblgen can't handle dependent type references aggressively enough: PR8330
multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode, bit CommutableRR,
bit ConvertibleToThreeAddress> {
let Uses = [EFLAGS], Defs = [EFLAGS] in {
let Constraints = "$src1 = $dst" in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
} // isConvertibleToThreeAddress
} // isCommutable
[X86] Adding FoldGenRegForm helper field (for memory folding tables tableGen backend) to X86Inst class and set its value for the relevant instructions. Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately). For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual: Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description 8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8. 88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8. Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions. In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen. Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr. This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables. Differential Revision: https://reviews.llvm.org/D32683 llvm-svn: 304087
2017-05-28 14:39:37 +02:00
def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
} // Constraints = "$src1 = $dst"
def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
let Constraints = "$src1 = $dst" in
def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
let mayLoad = 1, mayStore = 1 in
def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>;
}
} // Uses = [EFLAGS], Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
/// defined with "(set EFLAGS, (...". It would be really nice to find a way
/// to factor this with the other ArithBinOp_*.
///
multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
string mnemonic, Format RegMRM, Format MemMRM,
SDNode opnode,
bit CommutableRR, bit ConvertibleToThreeAddress> {
let Defs = [EFLAGS] in {
let isCommutable = CommutableRR in {
def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
}
} // isCommutable
[X86] Adding FoldGenRegForm helper field (for memory folding tables tableGen backend) to X86Inst class and set its value for the relevant instructions. Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately). For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual: Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description 8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8. 88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8. Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions. In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen. Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr. This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables. Differential Revision: https://reviews.llvm.org/D32683 llvm-svn: 304087
2017-05-28 14:39:37 +02:00
def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
}
def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
// NOTE: These are order specific, we want the mi8 forms to be listed
// first so that they are slightly preferred to the mi forms.
def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
let Predicates = [In64BitMode] in
def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
// These are for the disassembler since 0x82 opcode behaves like 0x80, but
// not in 64-bit mode.
let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
hasSideEffects = 0 in {
def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>;
let mayLoad = 1 in
def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>;
}
} // Defs = [EFLAGS]
def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
"{$src, %al|al, $src}">;
def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
"{$src, %ax|ax, $src}">;
def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
"{$src, %eax|eax, $src}">;
def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
"{$src, %rax|rax, $src}">;
}
defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
X86and_flag, and, 1, 0>;
defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
X86or_flag, or, 1, 0>;
defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
X86xor_flag, xor, 1, 0>;
defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
X86add_flag, add, 1, 1>;
let isCompare = 1 in {
defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
X86sub_flag, sub, 0, 0>;
}
// Arithmetic.
defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1, 0>;
defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
0, 0>;
let isCompare = 1 in {
defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
}
//===----------------------------------------------------------------------===//
// Semantically, test instructions are similar like AND, except they don't
// generate a result. From an encoding perspective, they are very different:
// they don't have all the usual imm8 and REV forms, and are encoded into a
// different space.
def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
(X86cmp (and_su node:$lhs, node:$rhs), 0)>;
let isCompare = 1 in {
let Defs = [EFLAGS] in {
let isCommutable = 1 in {
def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat>;
def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat>;
def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat>;
def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat>;
} // isCommutable
def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , X86testpat>;
def TEST16mr : BinOpMR_F<0x84, "test", Xi16, X86testpat>;
def TEST32mr : BinOpMR_F<0x84, "test", Xi32, X86testpat>;
def TEST64mr : BinOpMR_F<0x84, "test", Xi64, X86testpat>;
def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
let Predicates = [In64BitMode] in
def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
let Predicates = [In64BitMode] in
def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
} // Defs = [EFLAGS]
def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL,
"{$src, %al|al, $src}">;
def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX,
"{$src, %ax|ax, $src}">;
def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX,
"{$src, %eax|eax, $src}">;
def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX,
"{$src, %rax|rax, $src}">;
} // isCompare
//===----------------------------------------------------------------------===//
// ANDN Instruction
//
multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
PatFrag ld_frag> {
def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))],
IIC_BIN_NONMEM>, Sched<[WriteALU]>;
def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, EFLAGS,
(X86and_flag (not RC:$src1), (ld_frag addr:$src2)))], IIC_BIN_MEM>,
Sched<[WriteALULd, ReadAfterLd]>;
}
// Complexity is reduced to give and with immediate a chance to match first.
let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in {
defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8PS, VEX_4V;
defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8PS, VEX_4V, VEX_W;
}
let Predicates = [HasBMI], AddedComplexity = -6 in {
def : Pat<(and (not GR32:$src1), GR32:$src2),
(ANDN32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and (not GR64:$src1), GR64:$src2),
(ANDN64rr GR64:$src1, GR64:$src2)>;
def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
(ANDN32rm GR32:$src1, addr:$src2)>;
def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
(ANDN64rm GR64:$src1, addr:$src2)>;
}
//===----------------------------------------------------------------------===//
// MULX Instruction
//
multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop> {
let hasSideEffects = 0 in {
let isCommutable = 1 in
def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMul, WriteIMulH]>;
let mayLoad = 1 in
def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
!strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
[], IIC_MUL8>, T8XD, VEX_4V, Sched<[WriteIMulLd, WriteIMulH]>;
}
}
let Predicates = [HasBMI2] in {
let Uses = [EDX] in
defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem>;
let Uses = [RDX] in
defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem>, VEX_W;
}
//===----------------------------------------------------------------------===//
// ADCX Instruction
//
let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
Constraints = "$src0 = $dst", AddedComplexity = 10 in {
let SchedRW = [WriteALU] in {
def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
(ins GR32:$src0, GR32:$src), "adcx{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS,
(X86adc_flag GR32:$src0, GR32:$src, EFLAGS))],
IIC_BIN_CARRY_NONMEM>, T8PD;
def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
(ins GR64:$src0, GR64:$src), "adcx{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS,
(X86adc_flag GR64:$src0, GR64:$src, EFLAGS))],
IIC_BIN_CARRY_NONMEM>, T8PD;
} // SchedRW
let mayLoad = 1, SchedRW = [WriteALULd] in {
def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$src0, i32mem:$src), "adcx{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS,
(X86adc_flag GR32:$src0, (loadi32 addr:$src), EFLAGS))],
IIC_BIN_CARRY_MEM>, T8PD;
def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$src0, i64mem:$src), "adcx{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS,
(X86adc_flag GR64:$src0, (loadi64 addr:$src), EFLAGS))],
IIC_BIN_CARRY_MEM>, T8PD;
}
}
//===----------------------------------------------------------------------===//
// ADOX Instruction
//
let Predicates = [HasADX], hasSideEffects = 0, Defs = [EFLAGS],
Uses = [EFLAGS] in {
let SchedRW = [WriteALU] in {
def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS;
def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_NONMEM>, T8XS;
} // SchedRW
let mayLoad = 1, SchedRW = [WriteALULd] in {
def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"adox{l}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS;
def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"adox{q}\t{$src, $dst|$dst, $src}", [], IIC_BIN_MEM>, T8XS;
}
}