2017-06-20 00:43:19 +02:00
|
|
|
//===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
|
2011-12-12 22:14:40 +01:00
|
|
|
//
|
2019-01-19 09:50:56 +01:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2011-12-12 22:14:40 +01:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the Hexagon specific subclass of TargetSubtarget.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "Hexagon.h"
|
2017-06-20 00:43:19 +02:00
|
|
|
#include "HexagonInstrInfo.h"
|
2012-05-10 22:20:25 +02:00
|
|
|
#include "HexagonRegisterInfo.h"
|
2017-06-20 00:43:19 +02:00
|
|
|
#include "HexagonSubtarget.h"
|
2018-03-20 13:28:43 +01:00
|
|
|
#include "MCTargetDesc/HexagonMCTargetDesc.h"
|
2017-06-20 00:43:19 +02:00
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
#include "llvm/ADT/StringRef.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
2018-03-20 13:28:43 +01:00
|
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
2016-07-15 19:48:09 +02:00
|
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
|
|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
2011-12-12 22:14:40 +01:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
2017-06-20 00:43:19 +02:00
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
2015-11-25 21:30:59 +01:00
|
|
|
#include <map>
|
|
|
|
|
2011-12-12 22:14:40 +01:00
|
|
|
using namespace llvm;
|
|
|
|
|
2014-04-22 00:55:11 +02:00
|
|
|
#define DEBUG_TYPE "hexagon-subtarget"
|
|
|
|
|
2011-12-12 22:14:40 +01:00
|
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
|
|
#include "HexagonGenSubtargetInfo.inc"
|
|
|
|
|
2015-11-25 21:30:59 +01:00
|
|
|
|
2015-11-24 15:55:26 +01:00
|
|
|
static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
|
2015-11-25 21:30:59 +01:00
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true));
|
|
|
|
|
2016-07-15 23:34:02 +02:00
|
|
|
static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false));
|
|
|
|
|
|
|
|
static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true),
|
|
|
|
cl::desc("Enable the scheduler to generate .cur"));
|
|
|
|
|
2015-03-11 23:56:10 +01:00
|
|
|
static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
|
2015-11-25 21:30:59 +01:00
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false),
|
|
|
|
cl::desc("Disable Hexagon MI Scheduling"));
|
|
|
|
|
2016-05-28 04:02:51 +02:00
|
|
|
static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
|
2016-08-24 19:17:39 +02:00
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true),
|
2016-05-28 04:02:51 +02:00
|
|
|
cl::desc("Enable subregister liveness tracking for Hexagon"));
|
|
|
|
|
2016-07-25 16:42:11 +02:00
|
|
|
static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false),
|
|
|
|
cl::desc("If present, forces/disables the use of long calls"));
|
|
|
|
|
2017-05-06 00:13:57 +02:00
|
|
|
static cl::opt<bool> EnablePredicatedCalls("hexagon-pred-calls",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false),
|
|
|
|
cl::desc("Consider calls to be predicable"));
|
|
|
|
|
2017-08-28 18:24:22 +02:00
|
|
|
static cl::opt<bool> SchedPredsCloser("sched-preds-closer",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true));
|
|
|
|
|
|
|
|
static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true));
|
|
|
|
|
2017-08-28 20:36:21 +02:00
|
|
|
static cl::opt<bool> EnableCheckBankConflict("hexagon-check-bank-conflict",
|
|
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(true),
|
|
|
|
cl::desc("Enable checking for cache bank conflicts"));
|
|
|
|
|
2017-08-28 18:24:22 +02:00
|
|
|
|
2017-09-26 17:06:37 +02:00
|
|
|
HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
|
|
|
|
StringRef FS, const TargetMachine &TM)
|
2017-11-30 22:25:28 +01:00
|
|
|
: HexagonGenSubtargetInfo(TT, CPU, FS), OptLevel(TM.getOptLevel()),
|
Add support for Linux/Musl ABI
Differential revision: https://reviews.llvm.org/D72701
The patch adds a new option ABI for Hexagon. It primary deals with
the way variable arguments are passed and is use in the Hexagon Linux Musl
environment.
If a callee function has a variable argument list, it must perform the
following operations to set up its function prologue:
1. Determine the number of registers which could have been used for passing
unnamed arguments. This can be calculated by counting the number of
registers used for passing named arguments. For example, if the callee
function is as follows:
int foo(int a, ...){ ... }
... then register R0 is used to access the argument ' a '. The registers
available for passing unnamed arguments are R1, R2, R3, R4, and R5.
2. Determine the number and size of the named arguments on the stack.
3. If the callee has named arguments on the stack, it should copy all of these
arguments to a location below the current position on the stack, and the
difference should be the size of the register-saved area plus padding
(if any is necessary).
The register-saved area constitutes all the registers that could have
been used to pass unnamed arguments. If the number of registers forming
the register-saved area is odd, it requires 4 bytes of padding; if the
number is even, no padding is required. This is done to ensure an 8-byte
alignment on the stack. For example, if the callee is as follows:
int foo(int a, ...){ ... }
... then the named arguments should be copied to the following location:
current_position - 5 (for R1-R5) * 4 (bytes) - 4 (bytes of padding)
If the callee is as follows:
int foo(int a, int b, ...){ ... }
... then the named arguments should be copied to the following location:
current_position - 4 (for R2-R5) * 4 (bytes) - 0 (bytes of padding)
4. After any named arguments have been copied, copy all the registers that
could have been used to pass unnamed arguments on the stack. If the number
of registers is odd, leave 4 bytes of padding and then start copying them
on the stack; if the number is even, no padding is required. This
constitutes the register-saved area. If padding is required, ensure
that the start location of padding is 8-byte aligned. If no padding is
required, ensure that the start location of the on-stack copy of the
first register which might have a variable argument is 8-byte aligned.
5. Decrement the stack pointer by the size of register saved area plus the
padding. For example, if the callee is as follows:
int foo(int a, ...){ ... } ;
... then the decrement value should be the following:
5 (for R1-R5) * 4 (bytes) + 4 (bytes of padding) = 24 bytes
The decrement should be performed before the allocframe instruction.
Increment the stack-pointer back by the same amount before returning
from the function.
2019-12-27 20:03:01 +01:00
|
|
|
CPUString(Hexagon_MC::selectHexagonCPU(CPU)), TargetTriple(TT),
|
2017-09-26 17:06:37 +02:00
|
|
|
InstrInfo(initializeSubtargetDependencies(CPU, FS)),
|
|
|
|
RegInfo(getHwMode()), TLInfo(TM, *this),
|
|
|
|
InstrItins(getInstrItineraryForCPU(CPUString)) {
|
2020-01-13 23:07:30 +01:00
|
|
|
Hexagon_MC::addArchSubtarget(this, FS);
|
2017-09-26 17:06:37 +02:00
|
|
|
// Beware of the default constructor of InstrItineraryData: it will
|
|
|
|
// reset all members to 0.
|
|
|
|
assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
|
2015-11-25 21:30:59 +01:00
|
|
|
}
|
2015-03-11 23:56:10 +01:00
|
|
|
|
2014-06-27 02:27:40 +02:00
|
|
|
HexagonSubtarget &
|
|
|
|
HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
|
2020-01-17 23:29:40 +01:00
|
|
|
Optional<Hexagon::ArchEnum> ArchVer =
|
|
|
|
Hexagon::GetCpu(Hexagon::CpuTable, CPUString);
|
|
|
|
if (ArchVer)
|
|
|
|
HexagonArchVersion = *ArchVer;
|
2015-11-25 21:30:59 +01:00
|
|
|
else
|
2012-08-20 21:56:47 +02:00
|
|
|
llvm_unreachable("Unrecognized Hexagon processor version");
|
2011-12-12 22:14:40 +01:00
|
|
|
|
2017-10-18 20:07:07 +02:00
|
|
|
UseHVX128BOps = false;
|
|
|
|
UseHVX64BOps = false;
|
2020-01-17 23:29:40 +01:00
|
|
|
UseAudioOps = false;
|
2016-07-25 16:42:11 +02:00
|
|
|
UseLongCalls = false;
|
2017-09-26 17:06:37 +02:00
|
|
|
|
2018-06-20 15:56:09 +02:00
|
|
|
UseBSBScheduling = hasV60Ops() && EnableBSBSched;
|
2017-09-26 17:06:37 +02:00
|
|
|
|
2012-08-20 21:56:47 +02:00
|
|
|
ParseSubtargetFeatures(CPUString, FS);
|
2015-11-25 21:30:59 +01:00
|
|
|
|
2016-07-25 16:42:11 +02:00
|
|
|
if (OverrideLongCalls.getPosition())
|
|
|
|
UseLongCalls = OverrideLongCalls;
|
2015-11-25 21:30:59 +01:00
|
|
|
|
2020-01-13 23:07:30 +01:00
|
|
|
if (isTinyCore()) {
|
|
|
|
// Tiny core has a single thread, so back-to-back scheduling is enabled by
|
|
|
|
// default.
|
|
|
|
if (!EnableBSBSched.getPosition())
|
|
|
|
UseBSBScheduling = false;
|
|
|
|
}
|
|
|
|
|
2017-12-11 19:57:54 +01:00
|
|
|
FeatureBitset Features = getFeatureBits();
|
|
|
|
if (HexagonDisableDuplex)
|
2019-08-24 17:02:44 +02:00
|
|
|
setFeatureBits(Features.reset(Hexagon::FeatureDuplex));
|
2017-12-11 19:57:54 +01:00
|
|
|
setFeatureBits(Hexagon_MC::completeHVXFeatures(Features));
|
|
|
|
|
2014-06-27 02:27:40 +02:00
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2017-08-28 18:24:22 +02:00
|
|
|
void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
|
|
if (!SU.isInstr())
|
|
|
|
continue;
|
|
|
|
SmallVector<SDep, 4> Erase;
|
|
|
|
for (auto &D : SU.Preds)
|
|
|
|
if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
|
|
|
|
Erase.push_back(D);
|
|
|
|
for (auto &E : Erase)
|
|
|
|
SU.removePred(E);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
|
|
// Update the latency of chain edges between v60 vector load or store
|
|
|
|
// instructions to be 1. These instruction cannot be scheduled in the
|
|
|
|
// same packet.
|
|
|
|
MachineInstr &MI1 = *SU.getInstr();
|
|
|
|
auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
|
|
|
|
bool IsStoreMI1 = MI1.mayStore();
|
|
|
|
bool IsLoadMI1 = MI1.mayLoad();
|
|
|
|
if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
|
|
|
|
continue;
|
|
|
|
for (SDep &SI : SU.Succs) {
|
|
|
|
if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
|
|
|
|
continue;
|
|
|
|
MachineInstr &MI2 = *SI.getSUnit()->getInstr();
|
|
|
|
if (!QII->isHVXVec(MI2))
|
|
|
|
continue;
|
|
|
|
if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
|
|
|
|
SI.setLatency(1);
|
|
|
|
SU.setHeightDirty();
|
|
|
|
// Change the dependence in the opposite direction too.
|
|
|
|
for (SDep &PI : SI.getSUnit()->Preds) {
|
|
|
|
if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
|
|
|
|
continue;
|
|
|
|
PI.setLatency(1);
|
|
|
|
SI.getSUnit()->setDepthDirty();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if a call and subsequent A2_tfrpi instructions should maintain
|
|
|
|
// scheduling affinity. We are looking for the TFRI to be consumed in
|
|
|
|
// the next instruction. This should help reduce the instances of
|
|
|
|
// double register pairs being allocated and scheduled before a call
|
|
|
|
// when not used until after the call. This situation is exacerbated
|
|
|
|
// by the fact that we allocate the pair from the callee saves list,
|
|
|
|
// leading to excess spills and restores.
|
|
|
|
bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
|
|
|
|
const HexagonInstrInfo &HII, const SUnit &Inst1,
|
|
|
|
const SUnit &Inst2) const {
|
|
|
|
if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// TypeXTYPE are 64 bit operations.
|
|
|
|
unsigned Type = HII.getType(*Inst2.getInstr());
|
|
|
|
return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
|
|
|
|
Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
|
|
|
|
}
|
|
|
|
|
2018-03-20 13:28:43 +01:00
|
|
|
void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
|
|
|
|
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
|
2017-08-28 18:24:22 +02:00
|
|
|
SUnit* LastSequentialCall = nullptr;
|
2018-03-21 18:23:32 +01:00
|
|
|
// Map from virtual register to physical register from the copy.
|
|
|
|
DenseMap<unsigned, unsigned> VRegHoldingReg;
|
|
|
|
// Map from the physical register to the instruction that uses virtual
|
|
|
|
// register. This is used to create the barrier edge.
|
|
|
|
DenseMap<unsigned, SUnit *> LastVRegUse;
|
2017-08-28 18:24:22 +02:00
|
|
|
auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
|
|
|
|
auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
|
|
|
|
|
|
|
|
// Currently we only catch the situation when compare gets scheduled
|
|
|
|
// before preceding call.
|
|
|
|
for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
|
|
|
|
// Remember the call.
|
|
|
|
if (DAG->SUnits[su].getInstr()->isCall())
|
|
|
|
LastSequentialCall = &DAG->SUnits[su];
|
|
|
|
// Look for a compare that defines a predicate.
|
|
|
|
else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
|
2018-03-20 13:28:43 +01:00
|
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
|
2017-08-28 18:24:22 +02:00
|
|
|
// Look for call and tfri* instructions.
|
|
|
|
else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
|
|
|
|
shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
|
2018-03-20 13:28:43 +01:00
|
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
|
2018-03-21 18:23:32 +01:00
|
|
|
// Prevent redundant register copies due to reads and writes of physical
|
|
|
|
// registers. The original motivation for this was the code generated
|
|
|
|
// between two calls, which are caused both the return value and the
|
|
|
|
// argument for the next call being in %r0.
|
2017-08-28 18:24:22 +02:00
|
|
|
// Example:
|
|
|
|
// 1: <call1>
|
2017-11-30 13:12:19 +01:00
|
|
|
// 2: %vreg = COPY %r0
|
|
|
|
// 3: <use of %vreg>
|
2017-11-28 18:15:09 +01:00
|
|
|
// 4: %r0 = ...
|
2017-08-28 18:24:22 +02:00
|
|
|
// 5: <call2>
|
|
|
|
// The scheduler would often swap 3 and 4, so an additional register is
|
|
|
|
// needed. This code inserts a Barrier dependence between 3 & 4 to prevent
|
2018-03-21 18:23:32 +01:00
|
|
|
// this.
|
|
|
|
// The code below checks for all the physical registers, not just R0/D0/V0.
|
2017-08-28 18:24:22 +02:00
|
|
|
else if (SchedRetvalOptimization) {
|
|
|
|
const MachineInstr *MI = DAG->SUnits[su].getInstr();
|
2018-03-21 18:23:32 +01:00
|
|
|
if (MI->isCopy() &&
|
2019-08-02 01:27:28 +02:00
|
|
|
Register::isPhysicalRegister(MI->getOperand(1).getReg())) {
|
2018-03-21 18:23:32 +01:00
|
|
|
// %vregX = COPY %r0
|
|
|
|
VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
|
|
|
|
LastVRegUse.erase(MI->getOperand(1).getReg());
|
|
|
|
} else {
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (!MO.isReg())
|
|
|
|
continue;
|
|
|
|
if (MO.isUse() && !MI->isCopy() &&
|
|
|
|
VRegHoldingReg.count(MO.getReg())) {
|
|
|
|
// <use of %vregX>
|
|
|
|
LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
|
2019-08-02 01:27:28 +02:00
|
|
|
} else if (MO.isDef() && Register::isPhysicalRegister(MO.getReg())) {
|
2018-03-21 18:23:32 +01:00
|
|
|
for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
|
|
|
|
++AI) {
|
|
|
|
if (LastVRegUse.count(*AI) &&
|
|
|
|
LastVRegUse[*AI] != &DAG->SUnits[su])
|
|
|
|
// %r0 = ...
|
|
|
|
DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
|
|
|
|
LastVRegUse.erase(*AI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-08-28 18:24:22 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-08-28 20:36:21 +02:00
|
|
|
void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
|
|
|
|
if (!EnableCheckBankConflict)
|
|
|
|
return;
|
|
|
|
|
|
|
|
const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
|
|
|
|
|
|
|
|
// Create artificial edges between loads that could likely cause a bank
|
|
|
|
// conflict. Since such loads would normally not have any dependency
|
|
|
|
// between them, we cannot rely on existing edges.
|
|
|
|
for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
|
|
|
|
SUnit &S0 = DAG->SUnits[i];
|
|
|
|
MachineInstr &L0 = *S0.getInstr();
|
|
|
|
if (!L0.mayLoad() || L0.mayStore() ||
|
|
|
|
HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
|
|
|
|
continue;
|
2018-11-28 13:00:20 +01:00
|
|
|
int64_t Offset0;
|
2017-08-28 20:36:21 +02:00
|
|
|
unsigned Size0;
|
2018-11-28 13:00:20 +01:00
|
|
|
MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
|
2017-08-28 20:36:21 +02:00
|
|
|
// Is the access size is longer than the L1 cache line, skip the check.
|
2018-11-28 13:00:20 +01:00
|
|
|
if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32)
|
2017-08-28 20:36:21 +02:00
|
|
|
continue;
|
|
|
|
// Scan only up to 32 instructions ahead (to avoid n^2 complexity).
|
|
|
|
for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
|
|
|
|
SUnit &S1 = DAG->SUnits[j];
|
|
|
|
MachineInstr &L1 = *S1.getInstr();
|
|
|
|
if (!L1.mayLoad() || L1.mayStore() ||
|
|
|
|
HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
|
|
|
|
continue;
|
2018-11-28 13:00:20 +01:00
|
|
|
int64_t Offset1;
|
2017-08-28 20:36:21 +02:00
|
|
|
unsigned Size1;
|
2018-11-28 13:00:20 +01:00
|
|
|
MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
|
|
|
|
if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 ||
|
|
|
|
BaseOp0->getReg() != BaseOp1->getReg())
|
2017-08-28 20:36:21 +02:00
|
|
|
continue;
|
|
|
|
// Check bits 3 and 4 of the offset: if they differ, a bank conflict
|
|
|
|
// is unlikely.
|
|
|
|
if (((Offset0 ^ Offset1) & 0x18) != 0)
|
|
|
|
continue;
|
|
|
|
// Bits 3 and 4 are the same, add an artificial edge and set extra
|
|
|
|
// latency.
|
|
|
|
SDep A(&S0, SDep::Artificial);
|
|
|
|
A.setLatency(1);
|
|
|
|
S1.addPred(A, true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-05-01 17:54:18 +02:00
|
|
|
/// Enable use of alias analysis during code generation (during MI
|
2017-11-30 22:25:28 +01:00
|
|
|
/// scheduling, DAGCombine, etc.).
|
|
|
|
bool HexagonSubtarget::useAA() const {
|
|
|
|
if (OptLevel != CodeGenOpt::None)
|
|
|
|
return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-05-01 17:54:18 +02:00
|
|
|
/// Perform target specific adjustments to the latency of a schedule
|
2017-05-03 22:10:36 +02:00
|
|
|
/// dependency.
|
|
|
|
void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
|
|
|
|
SDep &Dep) const {
|
|
|
|
MachineInstr *SrcInst = Src->getInstr();
|
|
|
|
MachineInstr *DstInst = Dst->getInstr();
|
|
|
|
if (!Src->isInstr() || !Dst->isInstr())
|
|
|
|
return;
|
|
|
|
|
|
|
|
const HexagonInstrInfo *QII = getInstrInfo();
|
|
|
|
|
|
|
|
// Instructions with .new operands have zero latency.
|
|
|
|
SmallSet<SUnit *, 4> ExclSrc;
|
|
|
|
SmallSet<SUnit *, 4> ExclDst;
|
|
|
|
if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
|
|
|
|
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
|
|
|
|
Dep.setLatency(0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-06-20 15:56:09 +02:00
|
|
|
if (!hasV60Ops())
|
2017-05-03 22:10:36 +02:00
|
|
|
return;
|
|
|
|
|
2018-03-26 18:33:16 +02:00
|
|
|
// Set the latency for a copy to zero since we hope that is will get removed.
|
|
|
|
if (DstInst->isCopy())
|
|
|
|
Dep.setLatency(0);
|
|
|
|
|
|
|
|
// If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
|
2017-05-03 22:10:36 +02:00
|
|
|
// the correct latency.
|
2018-03-26 18:33:16 +02:00
|
|
|
if ((DstInst->isRegSequence() || DstInst->isCopy()) && Dst->NumSuccs == 1) {
|
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
2019-08-15 21:22:08 +02:00
|
|
|
Register DReg = DstInst->getOperand(0).getReg();
|
2018-03-26 18:33:16 +02:00
|
|
|
MachineInstr *DDst = Dst->Succs[0].getSUnit()->getInstr();
|
2017-05-03 22:10:36 +02:00
|
|
|
unsigned UseIdx = -1;
|
2018-03-26 18:33:16 +02:00
|
|
|
for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
|
|
|
|
const MachineOperand &MO = DDst->getOperand(OpNum);
|
|
|
|
if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
|
2017-05-03 22:10:36 +02:00
|
|
|
UseIdx = OpNum;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2018-03-26 18:33:16 +02:00
|
|
|
int DLatency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst,
|
|
|
|
0, *DDst, UseIdx));
|
|
|
|
DLatency = std::max(DLatency, 0);
|
|
|
|
Dep.setLatency((unsigned)DLatency);
|
2017-05-03 22:10:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// Try to schedule uses near definitions to generate .cur.
|
|
|
|
ExclSrc.clear();
|
|
|
|
ExclDst.clear();
|
|
|
|
if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
|
|
|
|
isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
|
|
|
|
Dep.setLatency(0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
updateLatency(*SrcInst, *DstInst, Dep);
|
|
|
|
}
|
|
|
|
|
2016-07-15 19:48:09 +02:00
|
|
|
void HexagonSubtarget::getPostRAMutations(
|
2017-06-20 00:43:19 +02:00
|
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
2019-08-15 17:54:37 +02:00
|
|
|
Mutations.push_back(std::make_unique<UsrOverflowMutation>());
|
|
|
|
Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
|
|
|
|
Mutations.push_back(std::make_unique<BankConflictMutation>());
|
2016-07-15 19:48:09 +02:00
|
|
|
}
|
|
|
|
|
2016-12-22 20:44:55 +01:00
|
|
|
void HexagonSubtarget::getSMSMutations(
|
2017-06-20 00:43:19 +02:00
|
|
|
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
|
2019-08-15 17:54:37 +02:00
|
|
|
Mutations.push_back(std::make_unique<UsrOverflowMutation>());
|
|
|
|
Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
|
2016-12-22 20:44:55 +01:00
|
|
|
}
|
|
|
|
|
2013-11-19 01:57:56 +01:00
|
|
|
// Pin the vtable to this file.
|
|
|
|
void HexagonSubtarget::anchor() {}
|
2015-03-11 23:56:10 +01:00
|
|
|
|
|
|
|
bool HexagonSubtarget::enableMachineScheduler() const {
|
|
|
|
if (DisableHexagonMISched.getNumOccurrences())
|
|
|
|
return !DisableHexagonMISched;
|
|
|
|
return true;
|
|
|
|
}
|
2016-05-28 04:02:51 +02:00
|
|
|
|
2017-05-06 00:13:57 +02:00
|
|
|
bool HexagonSubtarget::usePredicatedCalls() const {
|
|
|
|
return EnablePredicatedCalls;
|
|
|
|
}
|
|
|
|
|
2016-07-29 23:49:42 +02:00
|
|
|
void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
|
|
|
|
MachineInstr &DstInst, SDep &Dep) const {
|
2017-05-03 22:10:36 +02:00
|
|
|
if (Dep.isArtificial()) {
|
|
|
|
Dep.setLatency(1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-06-20 15:56:09 +02:00
|
|
|
if (!hasV60Ops())
|
2016-07-15 23:34:02 +02:00
|
|
|
return;
|
|
|
|
|
|
|
|
auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
// BSB scheduling.
|
|
|
|
if (QII.isHVXVec(SrcInst) || useBSBScheduling())
|
|
|
|
Dep.setLatency((Dep.getLatency() + 1) >> 1);
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
|
|
|
|
MachineInstr *SrcI = Src->getInstr();
|
|
|
|
for (auto &I : Src->Succs) {
|
|
|
|
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
|
|
|
|
continue;
|
|
|
|
unsigned DepR = I.getReg();
|
|
|
|
int DefIdx = -1;
|
|
|
|
for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
|
|
|
|
const MachineOperand &MO = SrcI->getOperand(OpNum);
|
|
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == DepR)
|
|
|
|
DefIdx = OpNum;
|
|
|
|
}
|
|
|
|
assert(DefIdx >= 0 && "Def Reg not found in Src MI");
|
|
|
|
MachineInstr *DstI = Dst->getInstr();
|
2018-03-26 21:04:58 +02:00
|
|
|
SDep T = I;
|
2017-05-03 22:10:36 +02:00
|
|
|
for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
|
|
|
|
const MachineOperand &MO = DstI->getOperand(OpNum);
|
|
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
|
|
|
|
int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI,
|
|
|
|
DefIdx, *DstI, OpNum));
|
|
|
|
|
|
|
|
// For some instructions (ex: COPY), we might end up with < 0 latency
|
|
|
|
// as they don't have any Itinerary class associated with them.
|
2018-03-26 18:33:16 +02:00
|
|
|
Latency = std::max(Latency, 0);
|
2017-05-03 22:10:36 +02:00
|
|
|
|
|
|
|
I.setLatency(Latency);
|
|
|
|
updateLatency(*SrcI, *DstI, I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the latency of opposite edge too.
|
2018-03-26 21:04:58 +02:00
|
|
|
T.setSUnit(Src);
|
|
|
|
auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
|
|
|
|
assert(F != Dst->Preds.end());
|
|
|
|
F->setLatency(I.getLatency());
|
2017-05-03 22:10:36 +02:00
|
|
|
}
|
2016-07-18 16:23:10 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Change the latency between the two SUnits.
|
2017-05-03 22:10:36 +02:00
|
|
|
void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
|
|
|
|
const {
|
|
|
|
for (auto &I : Src->Succs) {
|
2018-03-26 21:04:58 +02:00
|
|
|
if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
|
2016-07-18 16:23:10 +02:00
|
|
|
continue;
|
2017-05-03 22:10:36 +02:00
|
|
|
SDep T = I;
|
2016-07-18 16:23:10 +02:00
|
|
|
I.setLatency(Lat);
|
2017-05-03 22:10:36 +02:00
|
|
|
|
2016-07-18 16:23:10 +02:00
|
|
|
// Update the latency of opposite edge too.
|
2017-05-03 22:10:36 +02:00
|
|
|
T.setSUnit(Src);
|
|
|
|
auto F = std::find(Dst->Preds.begin(), Dst->Preds.end(), T);
|
|
|
|
assert(F != Dst->Preds.end());
|
2018-03-26 21:04:58 +02:00
|
|
|
F->setLatency(Lat);
|
2016-07-18 16:23:10 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
/// If the SUnit has a zero latency edge, return the other SUnit.
|
|
|
|
static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
|
|
|
|
for (auto &I : Deps)
|
|
|
|
if (I.isAssignedRegDep() && I.getLatency() == 0 &&
|
|
|
|
!I.getSUnit()->getInstr()->isPseudo())
|
|
|
|
return I.getSUnit();
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2016-07-15 23:34:02 +02:00
|
|
|
// Return true if these are the best two instructions to schedule
|
|
|
|
// together with a zero latency. Only one dependence should have a zero
|
|
|
|
// latency. If there are multiple choices, choose the best, and change
|
2017-05-03 22:10:36 +02:00
|
|
|
// the others, if needed.
|
2016-07-15 23:34:02 +02:00
|
|
|
bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
|
2017-05-03 22:10:36 +02:00
|
|
|
const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
|
|
|
|
SmallSet<SUnit*, 4> &ExclDst) const {
|
2016-07-29 23:49:42 +02:00
|
|
|
MachineInstr &SrcInst = *Src->getInstr();
|
|
|
|
MachineInstr &DstInst = *Dst->getInstr();
|
2016-07-15 23:34:02 +02:00
|
|
|
|
2016-09-17 18:21:09 +02:00
|
|
|
// Ignore Boundary SU nodes as these have null instructions.
|
|
|
|
if (Dst->isBoundaryNode())
|
|
|
|
return false;
|
|
|
|
|
2016-07-29 23:49:42 +02:00
|
|
|
if (SrcInst.isPHI() || DstInst.isPHI())
|
2016-07-15 23:34:02 +02:00
|
|
|
return false;
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
|
|
|
|
!TII->canExecuteInBundle(SrcInst, DstInst))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// The architecture doesn't allow three dependent instructions in the same
|
|
|
|
// packet. So, if the destination has a zero latency successor, then it's
|
|
|
|
// not a candidate for a zero latency predecessor.
|
|
|
|
if (getZeroLatency(Dst, Dst->Succs) != nullptr)
|
|
|
|
return false;
|
|
|
|
|
2016-07-18 16:23:10 +02:00
|
|
|
// Check if the Dst instruction is the best candidate first.
|
|
|
|
SUnit *Best = nullptr;
|
|
|
|
SUnit *DstBest = nullptr;
|
|
|
|
SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
|
|
|
|
if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
|
|
|
|
// Check that Src doesn't have a better candidate.
|
|
|
|
DstBest = getZeroLatency(Src, Src->Succs);
|
|
|
|
if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
|
|
|
|
Best = Dst;
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
2016-07-18 16:23:10 +02:00
|
|
|
if (Best != Dst)
|
|
|
|
return false;
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
// The caller frequently adds the same dependence twice. If so, then
|
2016-07-18 16:23:10 +02:00
|
|
|
// return true for this case too.
|
2017-05-03 22:10:36 +02:00
|
|
|
if ((Src == SrcBest && Dst == DstBest ) ||
|
|
|
|
(SrcBest == nullptr && Dst == DstBest) ||
|
|
|
|
(Src == SrcBest && Dst == nullptr))
|
2016-07-18 16:23:10 +02:00
|
|
|
return true;
|
2016-07-15 23:34:02 +02:00
|
|
|
|
2016-07-18 16:23:10 +02:00
|
|
|
// Reassign the latency for the previous bests, which requires setting
|
2016-07-15 23:34:02 +02:00
|
|
|
// the dependence edge in both directions.
|
2017-05-03 22:10:36 +02:00
|
|
|
if (SrcBest != nullptr) {
|
2018-06-20 15:56:09 +02:00
|
|
|
if (!hasV60Ops())
|
2017-05-03 22:10:36 +02:00
|
|
|
changeLatency(SrcBest, Dst, 1);
|
|
|
|
else
|
|
|
|
restoreLatency(SrcBest, Dst);
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
2017-05-03 22:10:36 +02:00
|
|
|
if (DstBest != nullptr) {
|
2018-06-20 15:56:09 +02:00
|
|
|
if (!hasV60Ops())
|
2017-05-03 22:10:36 +02:00
|
|
|
changeLatency(Src, DstBest, 1);
|
|
|
|
else
|
|
|
|
restoreLatency(Src, DstBest);
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
// Attempt to find another opprotunity for zero latency in a different
|
|
|
|
// dependence.
|
|
|
|
if (SrcBest && DstBest)
|
|
|
|
// If there is an edge from SrcBest to DstBst, then try to change that
|
|
|
|
// to 0 now.
|
|
|
|
changeLatency(SrcBest, DstBest, 0);
|
|
|
|
else if (DstBest) {
|
|
|
|
// Check if the previous best destination instruction has a new zero
|
|
|
|
// latency dependence opportunity.
|
|
|
|
ExclSrc.insert(Src);
|
|
|
|
for (auto &I : DstBest->Preds)
|
|
|
|
if (ExclSrc.count(I.getSUnit()) == 0 &&
|
|
|
|
isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
|
|
|
|
changeLatency(I.getSUnit(), DstBest, 0);
|
|
|
|
} else if (SrcBest) {
|
|
|
|
// Check if previous best source instruction has a new zero latency
|
|
|
|
// dependence opportunity.
|
|
|
|
ExclDst.insert(Dst);
|
|
|
|
for (auto &I : SrcBest->Succs)
|
|
|
|
if (ExclDst.count(I.getSUnit()) == 0 &&
|
|
|
|
isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
|
|
|
|
changeLatency(SrcBest, I.getSUnit(), 0);
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
return true;
|
2016-07-15 23:34:02 +02:00
|
|
|
}
|
|
|
|
|
2016-07-22 16:22:43 +02:00
|
|
|
unsigned HexagonSubtarget::getL1CacheLineSize() const {
|
|
|
|
return 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned HexagonSubtarget::getL1PrefetchDistance() const {
|
|
|
|
return 32;
|
|
|
|
}
|
|
|
|
|
2017-05-03 22:10:36 +02:00
|
|
|
bool HexagonSubtarget::enableSubRegLiveness() const {
|
|
|
|
return EnableSubregLiveness;
|
|
|
|
}
|