creating it before and subtracting split ranges.
This way, the SSA update code in LiveIntervalMap can properly create and use new
phi values in dupli. Now it is possible to create split regions where a value
escapes along two different CFG edges, creating phi values outside the split
region.
This is a work in progress and probably quite broken.
llvm-svn: 114492
by having X86DAGToDAGISel::SelectAddr get passed in the parent node
of the operand match (the load/store/atomic op) and having it get
the address space from that, instead of having special FS/GS addr
mode operations that require duplicating the entire instruction set
to support.
This makes FS and GS relative accesses *far* more predictable and
work much better. It also simplifies the X86 backend a bit, more
to come.
There is still a pending issue with nodes like ISD::PREFETCH and
X86ISD::FLD, which really should be MemSDNode's but aren't.
llvm-svn: 114491
that complex patterns are matched after the entire pattern has
a structural match, therefore the NodeStack isn't in a useful
state when the actual call to the matcher happens.
llvm-svn: 114489
load when the type of the load is not legal, even if truncates are not free.
The load is going to be legalized to an extending load anyway.
llvm-svn: 114488
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
llvm-svn: 114471
I think I've audited all uses, so it should be dependable for address spaces,
and the pointer+offset info should also be accurate when there.
llvm-svn: 114464
(sbbl x, x) sets the registers to 0 or ~0. Combined with two's complement arithmetic, we can fold
the intermediate AND and the ADD into a single SUB.
This fixes <rdar://problem/8449754>.
llvm-svn: 114460
instead of calling lower_bound or upper_bound directly.
This cleans up the search logic a bit because {lower,upper}_bound compare
LR->start by default, and it is usually simpler to search LR->end.
Funnelling all searches through one function also makes it possible to replace
the search algorithm with something faster than binary search.
llvm-svn: 114448
I am unable to write a test for this case, help is solicited, though...
What I did is to tickle the code in the debugger and verify that we do the right thing.
llvm-svn: 114430
into OptimizeCompareInstr.
This necessitates the passing of CmpValue around,
so widen the virtual functions to accomodate.
No functionality changes.
llvm-svn: 114428