Summary:
Support was added to the regular LTO backend, but not thinBackend.
This patch adds that support.
Reviewers: pcc, davide
Subscribers: mehdi_amini, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D46376
llvm-svn: 331481
We can't see all of the problems currently unless
we look at debug output when the global 'unsafe' is
on. It's a mess. This is another attempt to make
sure that D45710 is not making changes unintentionally.
llvm-svn: 331476
This took a bit of extra work as on Intel targets the old (V)PSLLDrr/(V)PSLLDrm style instructions act differently - I ended up creating WriteVecShiftImm classes for XMM/YMM/ZMM vector shift by immediate and retaining WriteVecShift as the default (used only by MMX) plus WriteVecShiftX/WriteVecShiftY. X86SchedWriteWidths hides most of this thank goodness.
llvm-svn: 331472
I'm choosing PPC out of convenience because it does
all of the transforms of interest in these tests by
default. There are multiple FMF problems shown in the
current checks. D45710 is proposing to fix part of
that.
llvm-svn: 331471
Summary:
When we create a fragment expression, and there already is an
old fragment expression, we assert that the new fragment is
within the range for the old fragment.
If for example the old fragment expression says that we
describe bit 10-16 of a variable (Offset=10, Size=6),
and we now want to create a new fragment expression only
describing bit 3-6 of the original value, then the resulting
fragment expression should have Offset=13, Size=3.
The assert is supposed to catch if the resulting fragment
expression is outside the range for the old fragment. However,
it used to verify that the Offset+Size of the new fragment was
smaller or equal than Offset+Size for the old fragment. What
we really want to check is that Offset+Size of the new fragment
is smaller than the Size of the old fragment.
Reviewers: aprantl, vsk
Reviewed By: aprantl
Subscribers: davide, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D46391
llvm-svn: 331465
Summary:
This reverts SVN r331441 (reapplies r331337), together with a fix
in to handle an already existing fragment expression in the
dbg.value that must be fragmented due to a split PHI node.
This should solve the problem seen in PR37321, which was the
reason for the revert of r331337.
The situation in PR37321 is that we have a PHI node like this
%u.sroa = phi i80 [ %u.sroa.x, %if.x ],
[ %u.sroa.y, %if.y ],
[ %u.sroa.z, %if.z ]
and a dbg.value like this
call void @llvm.dbg.value(metadata i80 %u.sroa,
metadata !13,
metadata !DIExpression(DW_OP_LLVM_fragment, 0, 80))
The phi node is split into three 32-bit PHI nodes
%30:gr32 = PHI %11:gr32, %bb.4, %14:gr32, %bb.5, %27:gr32, %bb.8
%31:gr32 = PHI %12:gr32, %bb.4, %15:gr32, %bb.5, %28:gr32, %bb.8
%32:gr32 = PHI %13:gr32, %bb.4, %16:gr32, %bb.5, %29:gr32, %bb.8
but since the original value only is 80 bits we need to adjust the size
of the last fragment expression, and with this patch we get
DBG_VALUE debug-use %30:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 0, 32)
DBG_VALUE debug-use %31:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 32, 32)
DBG_VALUE debug-use %32:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 64, 16)
Reviewers: vsk, aprantl, mstorsjo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46384
llvm-svn: 331464
These tests are for DAGCombiner::foldSelectCCToShiftAnd().
Right now, they were only tested for AArch64,
but given the upcoming X86 changes to the hasAndNot(),
the test coverage needs to be added.
These tests originated from D27489 / rL289738
llvm-svn: 331454
By default LLVM thinks very large vectors get aligned to their size when
passed across functions. Unfortunately no-one told the ARM backend so it
doesn't trigger stack realignment and so accesses can cause the usual
misalignment issues (e.g. a data abort).
This changes the ABI alignment to the stack alignment, which in practice
(and as a bonus) also coincides with the alignment "natural" vectors get.
llvm-svn: 331451
Also retagged VDBPSADBW instructions as SchedWritePSADBW instead of SchedWriteVecIMul which matches the behaviour on SkylakeServer (the only thing that supports it...)
llvm-svn: 331445
The code fails to check that the same value is used twice. We only make sure the left hand side of the and is part of the loop recurrence. The 'x' in the subtract can be any value.
llvm-svn: 331436
Add overloads for `__len__` and `__getitem__` to allow use of this class
on Linux as well as Windows. With these overloads, lit can be used on
both hosts for the swift testsuite.
llvm-svn: 331431
This patch was temporarily reverted because it has exposed bug 37229 on
PowerPC platform. The bug is unrelated to the patch and was just a general
bug in the optimization done for PowerPC platform only. The bug was fixed
by the patch rL331410.
This patch returns the disabled commit since the bug was fixed.
llvm-svn: 331427
These are necessary changes to support building LLVM for Fuchsia.
While these are not sufficient to run on Fuchsia, they are still
useful when cross-compiling LLVM libraries and runtimes for Fuchsia.
Differential Revision: https://reviews.llvm.org/D46345
llvm-svn: 331423
Summary:
Machine Instruction flags for fast math support and MIR print support
Reviewers: spatel, arsenm
Reviewed By: arsenm
Subscribers: wdng
Differential Revision: https://reviews.llvm.org/D45781
llvm-svn: 331417
Sinking the and closer to a compare against zero is beneficial on PPC as it
allows us to emit record-form instructions. In the future, we may expand this
to a larger set of operations that feed compares against zero since PPC has
lots of record-form instructions.
Differential revision: https://reviews.llvm.org/D46060
llvm-svn: 331416
This code previously existed only in MCMachOStreamer but is
useful for WebAssembly too. See: D46335
Differential Revision: https://reviews.llvm.org/D46297
llvm-svn: 331412
The CTR loops pass will insert the decrementing branch instruction in an exiting
block for the loop being transformed. However if that block is part of another
loop as well (whether a nested loop or with irreducible CFG), it is not valid
to use that exiting block. In fact, if the loop hass irreducible CFG, we don't
bother analyzing it and we just bail on the transformation. In practice, this
doesn't lead to a noticeable reduction in the number of loops transformed by
this pass.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37229
Differential Revision: https://reviews.llvm.org/D46162
llvm-svn: 331410
Summary:
Prior to this change, LLVM would in some cases emit *massive* writeout
functions with many 10s of 1000s of function calls in straight-line
code. This is a very wasteful way to represent what are fundamentally
loops and creates a number of scalability issues. Among other things,
register allocating these calls is extremely expensive. While D46127 makes this
less severe, we'll still run into scaling issues with this eventually. If not
in the compile time, just from the code size.
Now the pass builds up global data structures modeling the inputs to
these functions, and simply loops over the data structures calling the
relevant functions with those values. This ensures that the code size is
a fixed and only data size grows with larger amounts of coverage data.
A trivial change to IRBuilder is included to make it easier to build
the constants that make up the global data.
Reviewers: wmi, echristo
Subscribers: sanjoy, mcrosier, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D46357
llvm-svn: 331407
to make sure that Testgen always has access to coverage info even if
the match table used by the selector itself is stripped off that
information for performance reasons.
Reviewers: dsanders, aemerson
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, llvm-commits, dsanders
Differential Revision: https://reviews.llvm.org/D46098
llvm-svn: 331398
to share it between the Instruction Selector in optimized and
non-optimized modes both and the Testgen.
Reviewers: dsanders, aemerson
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, llvm-commits, dsanders
Differential Revision: https://reviews.llvm.org/D46097
llvm-svn: 331396
The main goal is to share getMatchTable between the Instruction
Selector and the Testgen.
The commit also contains some NFC only loosely related to refactoring
out the getMatchTable, but strongly related to the initial Testgen
patch (see https://reviews.llvm.org/D43962)
Reviewers: dsanders, aemerson
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, llvm-commits, dsanders
Differential Revision: https://reviews.llvm.org/D46096
llvm-svn: 331395
Only support UTF-8 (since LLVM contains UTF-8 parsing support
already, and the code even does that already) and Windows-1252
(where most code points has the same value in unicode). Keep the
existing default as only allowing ASCII input.
Using the option type JoinedOrSeparate, since the real rc.exe
handles options in this form, even if llvm-rc uses Separate for
other similar existing options.
Rename the struct SearchParams to WriterParams since it's now used
for more than just include paths.
Add a missing getResourceTypeName method to the BundleResource class,
to fix error printing from within STRINGTABLE resources (used in
tests).
Differential Revision: https://reviews.llvm.org/D46238
llvm-svn: 331391
Summary:
Some of our internal testing detected a major compile time regression which I've
tracked down to:
r278938 - Revert "Reassociate: Reprocess RedoInsts after each inst".
It appears that processing long chains of reassociatable instructions causes
non-linear (potentially exponential) growth in the number of times an
instruction is revisited. For example, the included test revisits instructions
220 times in a 20-instruction test.
It appears that r278938 reversed the order instructions were visited and that
this is preventing scheduled revisits from being cancelled as a result of
visiting the instructions naturally during normal processing. However, simply
reversing the order also harmed the generated code. Upon closer inspection, it
was discovered that revisits occurred in the opposite order to the first pass
(Thanks to escha for spotting that).
This patch makes the revisit order consistent with the first pass which allows
more revisits to be cancelled. This does appear to have a small impact on the
generated code in few cases but it significantly reduces compile-time.
After this patch, our internal test that was most affected by the regression
dropped from ~2 million revisits to ~4k resulting in Reassociate having 0.46%
of the runtime it had before (99.54% improvement).
Here's the summaries reported by lnt for the LLVM test-suite with --benchmarking-only:
| metric | geomean before patch | geomean after patch | delta |
| ----- | ----- | ----- | ----- |
| compile time | 0.1956 | 0.1261 | -35.54% |
| execution time | 0.3240 | 0.3237 | - |
| code size | 7365.4459 | 7365.6079 | - |
The results have a few wins and losses on compile-time, mostly in the +/- 2.5% range. There was one outlier though:
| Performance Regressions - compile_time | Δ | Previous | Current |
| MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk | 9.82% | 2.0473 | 2.2483 |
Reviewers: javed.absar, dberlin
Reviewed By: dberlin
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45734
llvm-svn: 331381
The size of an object cannot be less than the emitted size of all the
contained elements. This would cause an overflow in padding size
calculation. Add an assert to catch this.
Patch by Suyog Sarda.
llvm-svn: 331376