This was handled previously for arguments split due to not fitting in
an MVT. This was dropping the register for argument registers split
due to TLI::getRegisterTypeForCallingConv.
llvm-svn: 366574
Summary:
Current PRE hoists common computations into
CMBB = DT->findNearestCommonDominator(MBB, MBB1).
However, if CMBB is in a hot loop body, we might get performance
degradation.
Differential Revision: https://reviews.llvm.org/D64394
llvm-svn: 366570
Summary:
For split-stack, if the nested argument (i.e. R10) is not used, no need to save/restore it in the prologue.
Reviewers: thanm
Reviewed By: thanm
Subscribers: mstorsjo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64673
llvm-svn: 366569
We'd like to remove this whole function, because these are properties of
functions, not the target as a whole. These two are easy to remove
because they are only used for emitting ARM build attributes, which
expects them to represent the defaults for the whole module, not just
the last function generated.
This is needed to get correct build attributes when using IPRA on ARM,
because IPRA causes resetTargetOptions to get called before
ARMAsmPrinter::emitAttributes.
Differential revision: https://reviews.llvm.org/D64929
llvm-svn: 366562
If a function definition is not exact, then the linker could select a
differently-compiled version of it, which could use different registers.
https://reviews.llvm.org/D64909
llvm-svn: 366557
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366524
Summary:
Inline asm doesn't use labels when compiled as an object file. Therefore, we
shouldn't create one for the (potential) callbr destination. Instead, use the
symbol for the MachineBasicBlock.
Reviewers: nickdesaulniers, craig.topper
Reviewed By: nickdesaulniers
Subscribers: xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64888
llvm-svn: 366523
I plan on adding memcpy optimizations in the GlobalISel pipeline, but we can't
do that unless we delay lowering to actual function calls. This patch changes
the translator to generate G_INTRINSIC_W_SIDE_EFFECTS for these functions, and
then have each target specify that using the new custom legalizer for intrinsics
hook that they want it expanded it a libcall.
Differential Revision: https://reviews.llvm.org/D64895
llvm-svn: 366516
Add support for folding G_GEPs into loads of the form
```
ldr reg, [base, off]
```
when possible. This can save an add before the load. Currently, this is only
supported for loads of 64 bits into 64 bit registers.
Add a new addressing mode function, `selectAddrModeRegisterOffset` which
performs this folding when it is profitable.
Also add a test for addressing modes for G_LOAD.
Differential Revision: https://reviews.llvm.org/D64944
llvm-svn: 366503
This is a small extension of !associated, mostly useful for the implementation
convenience of instrumentation passes that RAUW globals with aliases, such
as LowerTypeTests.
Differential Revision: https://reviews.llvm.org/D64951
llvm-svn: 366502
This reverts r366441 (git commit 48104ef7c9c653bbb732b66d7254957389fea337)
This causes clang to fail to compile some file in Skia. Reduction soon.
llvm-svn: 366501
This causes sections with relative pointers to be marked as read only,
which means that they won't end up sharing pages with writable data.
Differential Revision: https://reviews.llvm.org/D64948
llvm-svn: 366494
Summary:
Add `__builtin_wasm_tls_base` so that LeakSanitizer can find the thread-local
block and scan through it for memory leaks.
Reviewers: tlively, aheejin, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64900
llvm-svn: 366475
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366442
This patch enables us to find the source loads for each element, splitting them into a Load and ByteOffset, and attempts to recognise consecutive loads that are in fact from the same source load.
A helper function, findEltLoadSrc, recurses to find a LoadSDNode and determines the element's byte offset within it. When attempting to match consecutive loads, byte offsetted loads then attempt to matched against a previous load that has already been confirmed to be a consecutive match.
Next step towards PR16739 - after this we just need to account for shuffling/repeated elements to create a vector load + shuffle.
Differential Revision: https://reviews.llvm.org/D64551
llvm-svn: 366441
LEA doesn't affect flags, so use it more liberally to replace an ADD when
we know that the ADD operands affect flags.
In the motivating example from PR40483:
https://bugs.llvm.org/show_bug.cgi?id=40483
...this lets us avoid duplicating a math op just to avoid flag conflict.
As mentioned in the TODO comments, this heuristic can be extended to
fire more often if that leads to more improvements.
Differential Revision: https://reviews.llvm.org/D64707
llvm-svn: 366431
Summary:
PerformVMOVRRDCombine ommits adding a offset
of 4 to the PointerInfo, when converting a
f64 = load[M]
to
{i32, i32} = {load[M], load[M + 4]}
Which would allow the machine scheduller
to break dependencies with the second load.
- pr42638
Reviewers: eli.friedman, dmgreen, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64870
llvm-svn: 366423
I'm not convinced the code this calls is properly vetted for
vXi1 vectors. Experimental vector widening legalization testing
for D55251 is now hitting an assertion failure inside
EltsFromConsecutiveLoads. This is occurring from a v2i1 load
having a store size different than its VT size. Hopefully
this commit will keep such issues from happening.
llvm-svn: 366405
The LocalStackSlotPass pre-allocates a stack protector and makes sure
that it comes before the local variables on the stack.
We need to make sure that later during PEI we don't re-allocate a new
stack protector slot. If that happens, the new stack protector slot will
end up being **after** the local variables that it should be protecting.
Therefore, we would have two slots assigned for two different stack
protectors, one at the top of the stack, and one at the bottom. Since
PEI will overwrite the assigned slot for the stack protector, the load
that is used to compare the value of the stack protector will use the
slot assigned by PEI, which is wrong.
For this, we need to check if the object is pre-allocated, and re-use
that pre-allocated slot.
Differential Revision: https://reviews.llvm.org/D64757
llvm-svn: 366371
Extract the sources to the GCD of the original size and target size,
padding with implicit_def as necessary.
Also fix the case where the requested source type is wider than the
original result type. This was ignoring the type, and just using the
destination. Do the operation in the requested type and truncate back.
llvm-svn: 366367
Use an anyext to the requested type for the leftover operand to
produce a slightly wider type, and then truncate the final merge.
I have another implementation almost ready which handles arbitrary
widens, but I think it produces worse code in this example (which I
think is 90% due to not folding redundant copies or folding out
implicit_def users), so I wanted to add this as a baseline first.
llvm-svn: 366366
Implement IR intrinsics for stack tagging. Generated code is very
unoptimized for now.
Two special intrinsics, llvm.aarch64.irg.sp and llvm.aarch64.tagp are
used to implement a tagged stack frame pointer in a virtual register.
Differential Revision: https://reviews.llvm.org/D64172
llvm-svn: 366360
Summary:
Since the target has no significant advantage of vectorization,
vector instructions bous threshold bonus should be optional.
amdgpu-inline-arg-alloca-cost parameter default value and the target
InliningThresholdMultiplier value tuned then respectively.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64642
llvm-svn: 366348
The original behavior was to always emit the offsets to each call site in the
call site table as uleb128 values, however on some architectures (eg RISCV)
these uleb128 offsets into the code cannot always be resolved until link time
(because relaxation will invalidate any calculated offsets), and there are no
appropriate relocations for uleb128 values. As a consequence it needs to be
possible to specify an alternative.
This also switches RISCV to use DW_EH_PE_udata4 for call side encodings in
.gcc_except_table
Differential Revision: https://reviews.llvm.org/D63415
Patch by Edward Jones.
llvm-svn: 366329
This patch sets correct encodings for DWARF exception handling for RISC-V
(other than call site encoding, which must be udata4 rather than uleb128 and
is handled by D63415).
This has the same intend as D63409, except this version matches GCC/binutils
behaviour which uses the same encodings regardless of PIC/non-PIC and
medlow/medany code model.
llvm-svn: 366327
Summary:
Pointed out in a comment for D49754, register spilling will currently
spill SPE registers at almost any offset. However, the instructions
`evstdd` and `evldd` require a) 8-byte alignment, and b) a limit of 256
(unsigned) bytes from the base register, as the offset must fix into a
5-bit offset, which ranges from 0-31 (indexed in double-words).
The update to the register spill test is taken partially from the test
case shown in D49754.
Additionally, pointed out by Kei Thomsen, globals will currently use
evldd/evstdd, though the offset isn't known at compile time, so may
exceed the 8-bit (unsigned) offset permitted. This fixes that as well,
by forcing it to always use evlddx/evstddx when accessing globals.
Part of the patch contributed by Kei Thomsen.
Reviewers: nemanjai, hfinkel, joerg
Subscribers: kbarton, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D54409
llvm-svn: 366318
Add narrowScalar to half of original size for G_ICMP.
ClampScalar G_ICMP's operands 2 and 3 to to s32.
Select G_ICMP for pointers for MIPS32. Pointer compare is same
as for integers, it is enough to declare them as legal type.
Differential Revision: https://reviews.llvm.org/D64856
llvm-svn: 366317
As well as other LLVM targets we do not handle "offsettable"
memory addresses in any special way. In other words, the "o" constraint
is an exact equivalent of the "m" one. But some existing code require
the "o" constraint support.
This fixes PR42589.
Differential Revision: https://reviews.llvm.org/D64792
llvm-svn: 366299
Summary:
Currently, on Emscripten, dynamic linking is not supported with threads.
This means that if thread-local storage is used, it must be used in a
statically-linked executable. Hence, local-exec is the only possible model.
This diff compiles all TLS variables to use local-exec on Emscripten as a
temporary measure until dynamic linking is supported with threads.
The goal for this is to allow C++ types with constructors to be thread-local.
Currently, when `clang` compiles a `thread_local` variable with a constructor,
it generates `__tls_guard` variable:
@__tls_guard = internal thread_local global i8 0, align 1
As no TLS model is specified, this is treated as general-dynamic, which we do
not support (and cannot support without implementing dynamic linking support
with threads in Emscripten). As a result, any C++ constructor in `thread_local`
variables would not compile.
By compiling all `thread_local` as local-exec, `__tls_guard` will compile and
we can support C++ constructors with TLS without implementing dynamic linking
with threads.
Depends on D64537
Reviewers: tlively, aheejin, sbc100
Reviewed By: aheejin
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64776
llvm-svn: 366275
Summary:
Thread local variables are placed inside a `.tdata` segment. Their symbols are
offsets from the start of the segment. The address of a thread local variable
is computed as `__tls_base` + the offset from the start of the segment.
`.tdata` segment is a passive segment and `memory.init` is used once per thread
to initialize the thread local storage.
`__tls_base` is a wasm global. Since each thread has its own wasm instance,
it is effectively thread local. Currently, `__tls_base` must be initialized
at thread startup, and so cannot be used with dynamic libraries.
`__tls_base` is to be initialized with a new linker-synthesized function,
`__wasm_init_tls`, which takes as an argument a block of memory to use as the
storage for thread locals. It then initializes the block of memory and sets
`__tls_base`. As `__wasm_init_tls` will handle the memory initialization,
the memory does not have to be zeroed.
To help allocating memory for thread-local storage, a new compiler intrinsic
is introduced: `__builtin_wasm_tls_size()`. This instrinsic function returns
the size of the thread-local storage for the current function.
The expected usage is to run something like the following upon thread startup:
__wasm_init_tls(malloc(__builtin_wasm_tls_size()));
Reviewers: tlively, aheejin, kripken, sbc100
Subscribers: dschuff, jgravelle-google, hiraditya, sunfish, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64537
llvm-svn: 366272