Sometimes the operand comes after the memory operand so we need 5 ReadDefaults first.
I suspect we also need to do something for the mask operand for masked avx512 instructions? I'm not sure if the mask should be ReadAfterLd or not since it can mask faults. If it shouldn't be ReadAfterLd then we're probably wrong for zero masking instructions already.
Differential Revision: https://reviews.llvm.org/D44726
llvm-svn: 328834
While the stack access instructions don't care about
alignment > 4, some transformations on the pointer calculation
do make assumptions based on knowing the low bits of a pointer
are 0. If a stack object ends up being accessed through its
absolute address (relative to the kernel scratch wave offset),
the addressing expression may depend on the stack frame being
properly aligned. This was breaking in a testcase due to the
add->or combine.
I think some of the SP/FP handling logic is still backwards,
and overly simplistic to support all of the stack features.
Code which tries to modify the SP with inline asm for example
or variable sized objects will probably require redoing this.
llvm-svn: 328831
The memory form of these instructions only read an input from memory. They don't have any register operands.
Differential Revision: https://reviews.llvm.org/D44836
llvm-svn: 328828
These instructions have the memory operand before the register operand. So we need to put ReadDefault for all the load ops first. Then the ReadAfterLd
Differential Revision: https://reviews.llvm.org/D44838
llvm-svn: 328823
As a further refinement on:
r328274 - For llvm-nm and Mach-O files also use function starts info in some cases when printing symbols
we want to special case a redacted LC_MAIN so it is easier to find.
rdar://38978929
llvm-svn: 328820
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: sdardis, RKSimon, dsanders, atanasyan
Reviewed By: atanasyan
Subscribers: atanasyan, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D44869
llvm-svn: 328815
There are two FPMs in an MSF file, the idea being that for
incremental updates you can write to the alternate one and then
atomically swap them on commit. LLVM defaulted to using FPM1
on the first commit, but this differs from Microsoft's behavior
which is to default to using FPM2 on the first commit. To
eliminate some byte-level file differences, this patch changes
LLVM's default to also be FPM2.
Additionally, LLVM was trying to be "smart" about marking FPM
pages allocated. In addition to marking every page belonging
to the alternate FPM as unallocated, LLVM also marked pages at
the end of the main FPM which were not needed as unallocated.
In order to match the behavior of Microsoft-generated PDBs, we
now always mark every FPM block as allocated, regardless of
whether it is in the main FPM or the alt FPM, and regardless of
whether or not it describes blocks which are actually in the file.
This has the side benefit of simplifying our code.
llvm-svn: 328812
When we determine that a field belongs to an MSF super block or
the free page map, we wouldn't print any additional information.
With this patch, we now print the value of the field (for super
block fields) or the allocation status of the specified byte (in
the case of offsets in the FPM).
llvm-svn: 328808
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
We emit the new syntax only for DWARF v5 and later.
Fixes the bug found by asan. Also XFAIL the new test for Darwin, which
is stuck on DWARF v2, and fix up other tests so they stop failing on
Windows. Last but not least, don't break "clang -g" of an assembler
file that has .file directives in it.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 328805
We were trying to dig into the super block fields and print a
description of the field at the specified offset, but we were
printing the wrong field due to an off-by-one-field-error.
llvm-svn: 328804
When investigating various things, we often have a file offset
and what to know what's in the PDB at that address. For example
we may be doing a binary comparison of two LLD-generated PDBs
to look for sources of non-determinism, or we may wish to compare
an LLD-generated PDB with a Microsoft generated PDB for sources
of byte-for-byte incompatibility. In these cases, we can do a
binary diff of the two files, and once we find a mismatched byte
we can use explain to figure out what that byte is, immediately
honining in on the problem.
This patch implements this by trying to narrow the meaning of
a particular file offset down as much as possible.
Differential Revision: https://reviews.llvm.org/D44959
llvm-svn: 328799
In r312664 (D36404), JumpThreading stopped threading edges into
loop headers. Unfortunately, I observed a significant performance
regression as a result of this change. Upon further investigation,
the problematic pattern looked something like this (after
many high level optimizations):
while (true) {
bool cond = ...;
if (!cond) {
<body>
}
if (cond)
break;
}
Now, naturally we want jump threading to essentially eliminate the
second if check and hook up the edges appropriately. However, the
above mentioned change, prevented it from doing this because it would
have to thread an edge into the loop header.
Upon further investigation, what is happening is that since both branches
are threadable, JumpThreading picks one of them at arbitrarily. In my
case, because of the way that the IR ended up, it tended to pick
the one to the loop header, bailing out immediately after. However,
if it had picked the one to the exit block, everything would have
worked out fine (because the only remaining branch would then be folded,
not thraded which is acceptable).
Thus, to fix this problem, we can simply eliminate loop headers from
consideration as possible threading targets earlier, to make sure that
if there are multiple eligible branches, we can still thread one of
the ones that don't target a loop header.
Patch by Keno Fischer!
Differential Revision: https://reviews.llvm.org/D42260
llvm-svn: 328798
We should align the value of the field, not the overall section offset.
This distinction matters if one of the debug_names contributions is not
of size which is a multiple of four. The dwarf producers may choose to
emit rounded contributions, but they are not required to do so. In the
latter case, without this patch we would corrupt the parsing state, as
we would adjust the offset even if subsequent contributions contained
correctly rounded augmentation strings.
llvm-svn: 328796
The tool was passing the wrong operand index to method
MCSubtargetInfo::getReadAdvanceCycles(). That method requires a "UseIdx", and
not the operand index. This was found when testing X86 code where instructions
had a memory folded operand.
This patch fixes the issue and adds test read-advance-1.s to ensure that
the ReadAfterLd (a ReadAdvance of 3cy) information is correctly used.
llvm-svn: 328790
Before this patch we were parsing the attributes as section offsets, as
that is what apple_names is doing. However, this is not correct as DWARF
v5 specifies that this attribute should use the Reference form class.
This also updates all the testcases (except the ones that deliberately
pass a different form) to use the correct form class.
llvm-svn: 328773
Fixes for "lets" references which should be "let's" in the Kaleidoscope
tutorial.
Patch by: Robin Dupret
Differential Revision: https://reviews.llvm.org/D44990
llvm-svn: 328772
We are re-adding all the bitcasts, constant masks and target shuffles to the work list for no apparent gain.
Found while investigating adding SimplifyDemandedVectorElts to target shuffles.
Differential Revision: https://reviews.llvm.org/D44942
llvm-svn: 328771
Summary:
As we are only doing X.0.Z releases (not using the minor version), there is no need to keep -X.Y in the version.
Like patch https://reviews.llvm.org/D41808, I propose that we rename libLLVM-7.0svn.so to libLLVM-7svn.so
This patch will also rename downstream libraries like liblldb-7.0 to liblldb-7
Reviewers: axw, beanz, dim, hans
Reviewed By: dim, hans
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D41869
llvm-svn: 328768
I believe the role of ehDataReg has been replaced by MipsABIInfo::GetEhDataReg, thus removing the dead code.
Patch By: Wei-Ren Chen.
Reviewers: ehostunreach, sdardis
Differential Revision: https://reviews.llvm.org/D44867
llvm-svn: 328767
The existing LoopRotation.cpp is implemented as one of loop passes instead of
being a utility. The user cannot easily perform the loop rotation selectively
(or on demand) under different optimization level. For example, the loop
rotation is needed as part of the logic to convert a loop into a loop with
bottom test for a transformation. If the loop rotation is simply added as a
loop pass before the transformation, the pass is skipped if it is compiled at
–O0 or if it is explicitly disabled by the user, causing the compiler to
generate incorrect code. Furthermore, as a loop pass it will rotate all loops
instead of just the relevant loops.
We provide a utility interface for the loop rotation so that the loop rotation
can be called on demand. The changeset is as follows:
- Create a new file lib/Transforms/Utils/LoopRotationUtils.cpp and move the main
implementation of class LoopRotate into this file.
- Create a new file llvm/include/Transform/Utils/LoopRotationUtils.h with the
interface LoopRotation(...).
- Original LoopRotation.cpp is changed to use the utility function LoopRotation
in LoopRotationUtils.cpp. This is done in the same way community did for
mem-to-reg implementation.
Patch by Jin Lin!
Differential Revision: https://reviews.llvm.org/D44595
llvm-svn: 328766
Otherwise the definitions can't see the extern C declarations and get
name mangled, making it impossible for users to call them. This breaks
the Go bindings.
llvm-svn: 328765
The IntelPrinter and the ATTPrinter produce the same strings for the same input. We already use the ATTPrinter explicitly in several other places.
llvm-svn: 328762
Summary:
Add support for cleanupret, catchret, catchpad, cleanuppad and catchswitch and their associated accessors.
Test is modified from SimplifyCFG because it contains many diverse usages of these instructions.
Reviewers: whitequark, deadalnix, echristo
Reviewed By: echristo
Subscribers: llvm-commits, harlanhaskins
Differential Revision: https://reviews.llvm.org/D44496
llvm-svn: 328759
Eli pointed out that variadic functions are totally a thing, so this
assert is incorrect.
No test-case is provided, since the only way this assert fires is if a
specific DenseMap falls back to doing `isEqual` checks, and that seems
fairly brittle (and requires a pyramid of growing
`call void (i8, ...) @varargs(i8 0)`).
llvm-svn: 328755
We use a `DenseMap<MemoryLocOrCall, MemlocStackInfo>` to keep track of
prior work when optimizing uses in MemorySSA. Because we weren't
accounting for callsite arguments in either the hash code or equality
tests for `MemoryLocOrCall`s, we optimized uses too aggressively in
some rare cases.
Fix by Daniel Berlin.
Should fix PR36883.
llvm-svn: 328748