Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
The attributes in the example are placed wrong:
They belong after the type, not after the parameter name.
Reviewed by: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D94683
The target feature matrix in the code generator documentation is
outdated. This PR fixes some entries for PowerPC and SystemZ.
Both have:
- assembly parser
- disassembler
- .o file writing
Reviewers: uweigand
Differential Revision: https://reviews.llvm.org/D71004
When the target option GuaranteedTailCallOpt is specified, calls with
the fastcc calling convention will be transformed into tail calls if
they are in tail position. This diff adds a new calling convention,
tailcc, currently supported only on X86, which behaves the same way as
fastcc, except that the GuaranteedTailCallOpt flag does not need to
enabled in order to enable tail call optimization.
Patch by Dwight Guth <dwight.guth@runtimeverification.com>!
Reviewed By: lebedev.ri, paquette, rnk
Differential Revision: https://reviews.llvm.org/D67855
llvm-svn: 373976
The note in the documentation suggests this restriction is a compile
time optimization for architectures that make heavy use of
bundling. Allowing virtual registers in a bundle is useful for some
(non-R600) AMDGPU use cases and are infrequent enough to matter.
A more common AMDGPU use case has already been using virtual registers
in bundles since r333691, although never calling finalizeBundle on
them and manually creating the use/def list on the BUNDLE
instruction. This is also relatively infrequent, and only happens for
consecutive sequences of some load/store types.
llvm-svn: 367597
Summary:
return_call and return_call_indirect are only valid if the return
types of the callee and caller match. We were previously not enforcing
that, which was producing invalid modules.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65246
llvm-svn: 367339
This adds documentation that describes remarks in LLVM.
It aims at explaining what remarks are, how to enable them, and what
users can do with the different modes.
It lists all the available flags in LLVM (excluding clang), and
describes the expected YAML structure as well as the tools that support
the YAML format today.
Differential Revision: https://reviews.llvm.org/D64355
llvm-svn: 365578
Summary:
Implements direct and indirect tail calls enabled by the 'tail-call'
feature in both DAG ISel and FastISel. Updates existing call tests and
adds new tests including a binary encoding test.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62877
llvm-svn: 364445
This should be a valid exception to the general rule of not creating new shuffle masks in IR...
because we already do it. :)
Also, DAG combining/legalization will undo this by widening the shuffle back out if needed.
Explanation for how we already do this: SLP or vector source can create chains of insert/extract
as shown in 1 of the examples from PR16739:
https://godbolt.org/z/NlK7rAhttps://bugs.llvm.org/show_bug.cgi?id=16739
And we expect instcombine or DAGCombine to clean that up by creating relatively simple shuffles.
Differential Revision: https://reviews.llvm.org/D62024
llvm-svn: 361338
Fix the values of BPF_X and BPF_K according to BPFInstrFormats.td:
"
def BPF_K : BPFSrcType<0x0>;
def BPF_X : BPFSrcType<0x1>;
"
The right value for BPF_X is 0x1, and the right value for BPF_K is 0x0.
Signed-off-by: Wang YanQing <udknight@gmail.com>
Differential Revision: https://reviews.llvm.org/D61512
llvm-svn: 359904
* Add support for uniquing strings in the remark streamer and emitting the string table in the remarks section.
* Add parsing support for the string table in the RemarkParser.
From this remark:
```
--- !Missed
Pass: inline
Name: NoDefinition
DebugLoc: { File: 'test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c',
Line: 7, Column: 3 }
Function: printArgsNoRet
Args:
- Callee: printf
- String: ' will not be inlined into '
- Caller: printArgsNoRet
DebugLoc: { File: 'test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c',
Line: 6, Column: 0 }
- String: ' because its definition is unavailable'
...
```
to:
```
--- !Missed
Pass: 0
Name: 1
DebugLoc: { File: 3, Line: 7, Column: 3 }
Function: 2
Args:
- Callee: 4
- String: 5
- Caller: 2
DebugLoc: { File: 3, Line: 6, Column: 0 }
- String: 6
...
```
And the string table in the .remarks/__remarks section containing:
```
inline\0NoDefinition\0printArgsNoRet\0
test-suite/SingleSource/UnitTests/2002-04-17-PrintfChar.c\0printf\0
will not be inlined into \0 because its definition is unavailable\0
```
This is mostly supposed to be used for testing purposes, but it gives us
a 2x reduction in the remark size, and is an incremental change for the
updates to the remarks file format.
Differential Revision: https://reviews.llvm.org/D60227
llvm-svn: 359050
A section containing metadata on remark diagnostics will be emitted if
the flag (-mllvm) -remarks-section is present.
For now, the metadata is:
* a magic number for remarks: "REMARKS\0"
* the version number: a little-endian uint64_t
* the absolute file path to the serialized remark diagnostics: a
null-terminated string.
Differential Revision: https://reviews.llvm.org/D59571
llvm-svn: 357043
Change symbol values in the stack_size section from being 8 bytes, to being a target dependent size.
Differential Revision: https://reviews.llvm.org/D42108
llvm-svn: 322619
Re applying after fixing issues in the diff, sorry for any painful conflicts/merges!
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319430
Summary:
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
I wasn't sure who to put as reviewers, so please add/remove people as appropriate.
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319423
Added relocation names:
- R_AMDGPU_GOTPCREL32_LO
- R_AMDGPU_GOTPCREL32_HI
- R_AMDGPU_REL32_LO
- R_AMDGPU_REL32_HI
AMDGPU isa only supports 32-bit immediates. In order to access 64-bit address we need to generate 32-bit lo/hi relocations, and do the right math (separate patch). Currently we only generate one 32 bit relocation for lower bits for each access, losing higher bits. Hence we need relocations listed above.
Differential Revision: https://reviews.llvm.org/D25546
llvm-svn: 284191
Lots of blocks had "llvm" or "nasm" syntax types but either weren't following
the syntax, or the syntax has changed (and sphinx hasn't keep up) or the type
doesn't even exist (nasm?).
Other documents had :options: what were invalid. I only removed those that had
warnings, and left the ones that didn't, in order to follow the principle of
least surprise.
This is like this for ages, but the buildbot is now failing on errors. It may
take a while to upgrade the buildbot's sphinx, if that's even possible, but
that shouldn't stop us from getting docs updates (which seem down for quite
a while).
Also, we're not losing any syntax highlight, since when it doesn't parse, it
doesn't colour. Ie. those blocks are not being highlighted anyway.
I'm trying to get all docs in one go, so that it's easy to revert later if we
do fix, or at least easy to know what's to fix.
llvm-svn: 276109
Summary:
We will start generating this in a future patch.
Reviewers: arsenm, kzhuravl, rafael, ruiu, tony-tye
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D21482
llvm-svn: 273628
Summary:
This documents the various relocation types that are supported by the
Radeon Open Compute (ROC) runtime (which is essentially the dynamic
linker for AMDGPU).
Only R_AMDGPU_32 is not currently supported by the ROC runtime, but
it will usually be resolved at link time by lld.
Patch by: Konstantin Zhuravlyov
Reviewers: kzhuravl, rafael
Subscribers: rafael, arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D20952
llvm-svn: 272352
This backend was supposed to generate C++ code which will re-construct
the LLVM IR passed as input. This seems to me to have very marginal
usefulness in the first place.
However, the code has never been updated to use IRBuilder, which makes
its current value negative -- people who look at the output may be
steered to use the *wrong* C++ APIs to construct IR.
Furthermore, it's generated code that doesn't compile since at least
2013.
Differential Revision: http://reviews.llvm.org/D19942
llvm-svn: 268631
This option takes the name of the basic block you want to visualize
with -view-*-dags
Differential Revision: http://reviews.llvm.org/D6948
llvm-svn: 225953
I've been assuming chain operands were always the first operand,
since the documentation says this. I was confused about why they
were missing after instruction selection. Apparently the convention
changes to using the last operand for MachineSDNodes and I've never
noticed before.
llvm-svn: 216934
This reverts commit r200561.
This calling convention was an attempt to match the MSVC C++ ABI for
methods that return structures by value. This solution didn't scale,
because it would have required splitting every CC available on Windows
into two: one for methods and one for free functions.
Now that we can put sret on the second arg (r208453), and Clang does
that (r208458), revert this hack.
llvm-svn: 208459