dag-combine optimization to implement the ext-load efficiently (using shuffles).
For example the type <4 x i8> is stored in memory as i32, but it needs to
find its way into a <4 x i32> register. Previously we scalarized the memory
access, now we use shuffles.
llvm-svn: 139995
maxps and maxpd). This broke the sse41-blend.ll testcase by causing
maxpd to be produced rather than a cmp+blend pair, which is the reason
I tweaked it. Gives a small speedup on doduc with dragonegg when the
GCC vectorizer is used.
llvm-svn: 139986
are declared with load patterns. This fix the crash in PR10941. No testcases,
since a fold is triggered and then converted back to the register form
afterwards.
llvm-svn: 139953
This PR basically reports a problem where a crash in generated code
happened due to %rbp being clobbered:
pushq %rbp
movq %rsp, %rbp
....
vmovmskps %ymm12, %ebp
....
movq %rbp, %rsp
popq %rbp
ret
Since Eric's r123367 commit, the default stack alignment for x86 32-bit
has changed to be 16-bytes. Since then, the MaxStackAlignmentHeuristicPass
hasn't been really used, but with AVX it becomes useful again, since per
ABI compliance we don't always align the stack to 256-bit, but only when
there are 256-bit incoming arguments.
ReserveFP was only used by this pass, but there's no RA target hook that
uses getReserveFP() to check for the presence of FP (since nothing was
triggering the pass to run, the uses of getReserveFP() were removed
through time without being noticed). Change this pass to use
setForceFramePointer, which is properly called by MachineFunction
hasFP method.
The testcase is very big and dependent on RA, not sure if it's worth
adding to test/CodeGen/X86.
llvm-svn: 139939
take into consideration the presence of AVX. This change, together with
the SSEDomainFix enabled for AVX, makes AVX codegen to always (hopefully)
emit the same code as SSE for 128-bit vector ops. I don't
have a testcase for this, but AVX now beats SSE in performance for
128-bit ops in the majority of programas in the llvm testsuite
llvm-svn: 139817
alignment check for 256-bit classes more strict. There're no testcases
but we catch more folding cases for AVX while running single and multi
sources in the llvm testsuite.
Since some 128-bit AVX instructions have different number of operands
than their SSE counterparts, they are placed in different tables.
256-bit AVX instructions should also be added in the table soon. And
there a few more 128-bit versions to handled, which should come in
the following commits.
llvm-svn: 139687
more strict about the alignment checking. This was found by inspection
and I don't have any testcases so far, although the llvm testsuite runs
without any problem.
llvm-svn: 139625
However with this fix it does now.
Basically the operand order for the x86 target specific node
is not the same as the instruction, but since the intrinsic need that
specific order at the instruction definition, just change the order
during legalization. Also, there were some wrong invertions of condition
codes, such as GE => LE, GT => LT, fix that too. Fix PR10907.
llvm-svn: 139528
assert("not implemented for target shuffle node");
to:
assert(0 && "not implemented for target shuffle node");
This causes a test failure in CodeGen/X86/palignr.ll which has
been marked as XFAIL for the time being.
Test failure filed at PR10901.
llvm-svn: 139454
single field (Flags), which is a bitwise OR of items from the TB_*
enum. This makes it easier to add new information in the future.
* Gives every static array an equivalent layout: { RegOp, MemOp, Flags }
* Adds a helper function, AddTableEntry, to avoid duplication of the
insertion code.
* Renames TB_NOT_REVERSABLE to TB_NO_REVERSE.
* Adds TB_NO_FORWARD, which is analogous to TB_NO_REVERSE, except that
it prevents addition of the Reg->Mem entry. (This is going to be used
by Native Client, in the next CL).
Patch by David Meyer
llvm-svn: 139311
in Nadav's r139285 and r139287 commits.
1) Rename vsel.ll to a more descriptive name
2) Change the order of BLEND operands to "Op1, Op2, Cond", this is
necessary because PBLENDVB is already used in different places with
this order, and it was being emitted in the wrong way for vselect
3) Add AVX patterns and tests for the same SSE41 instructions
llvm-svn: 139305
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159
init.trampoline and adjust.trampoline intrinsics, into two intrinsics
like in GCC. While having one combined intrinsic is tempting, it is
not natural because typically the trampoline initialization needs to
be done in one function, and the result of adjust trampoline is needed
in a different (nested) function. To get around this llvm-gcc hacks the
nested function lowering code to insert an additional parent variable
holding the adjust.trampoline result that can be accessed from the child
function. Dragonegg doesn't have the luxury of tweaking GCC code, so it
stored the result of adjust.trampoline in the memory GCC set aside for
the trampoline itself (this is always available in the child function),
and set up some new memory (using an alloca) to hold the trampoline.
Unfortunately this breaks Go which allocates trampoline memory on the
heap and wants to use it even after the parent has exited (!). Rather
than doing even more hacks to get Go working, it seemed best to just use
two intrinsics like in GCC. Patch mostly by Sanjoy Das.
llvm-svn: 139140
instructions are more aligned than the CPU requires, and adds some additional
directives, to follow in future patches. Patch by David Meyer!
llvm-svn: 139125
The explanation about a 0 argument being materialized as xor is no
longer valid. Rematerialization will check if EFLAGS is live before
clobbering it.
The code produced by X86TargetLowering::EmitLoweredSelect does not
clobber EFLAGS.
This causes one less testb instruction to be generated in the cmov.ll
test case.
llvm-svn: 139057
- Duplicate some store patterns to their AVX forms!
- Catched a bug while restricting the patterns subtarget, fix it
and update a testcase to check it properly
llvm-svn: 138851
code is inserted to first check if the current stacklet has enough
space. If so, space is allocated by simply decrementing the stack
pointer. Otherwise a runtime routine (__morestack_allocate_stack_space
in libgcc) is called which allocates the required memory from the
heap.
Patch by Sanjoy Das.
llvm-svn: 138818
from DYNAMIC_STACKALLOC.
Two new pseudo instructions (SEG_ALLOCA_32 and SEG_ALLOCA_64) which
will match X86SegAlloca (based on word size) are also added. They
will be custom emitted to inject the actual stack handling code.
Patch by Sanjoy Das.
llvm-svn: 138814
X86. Modify the pass added in the previous patch to call this new
code.
This new prologues generated will call a libgcc routine (__morestack)
to allocate more stack space from the heap when required
Patch by Sanjoy Das.
llvm-svn: 138812
explicit about which subtarget they refer to, and add AVX versions of
the ones we currently don't. Make the mask check more strict, to be
clear it won't be used to match to 256-bit versions!
llvm-svn: 138514
SSE transition penalty. The pass is enabled through the "x86-use-vzeroupper"
llc command line option. This is only the first step (very naive and
conservative one) to sketch out the idea, but proper DFA is coming next
to allow smarter decisions. Comments and ideas now and in further commits
will be very appreciated.
llvm-svn: 138317
instead of 2. They were already defined this way in their regular
version, but not for the intrinsics versions (*_Int), and that would work
for assembly emission but not for object code, since a MachineOperand
would be missing. This commit fix PR10697.
Also removed the {VSQRT,VRSQRT,VRCP}r_Int forms and match the intrinsic
via INSERT_SUBREG+EXTRACT_SUBREG patterns. The same couldn't be done for
memory versions because sse_load_f32/sse_load_f64 operand need special
handling and don't work like regular "addr" operands.
There are right now 114 "*_Int" and 98 "Int_*" forms! I'm slowly
removing them as I step through, but hope we can get rid of these
someday, they are really annoying :)
llvm-svn: 138012
match splats in the form (splat (scalar_to_vector (load ...))) whenever
the load can be folded. All the logic and instruction emission is
working but because of PR8156, there are no ways to match loads, cause
they can never be folded for splats. Thus, the tests are XFAILed, but
I've tested and exercised all the logic using a relaxed version for
checking the foldable loads, as if the bug was already fixed. This
should work out of the box once PR8156 gets fixed since MayFoldLoad will
work as expected.
llvm-svn: 137810
vinsertf128 $1 + vpermilps $0, remove the old code that used to first
do the splat in a 128-bit vector and then insert it into a larger one.
This is better because the handling code gets simpler and also makes a
better room for the upcoming vbroadcast!
llvm-svn: 137807
there is no support for native 256-bit shuffles, be more smart in some
cases, for example, when you can extract specific 128-bit parts and use
regular 128-bit shuffles for them. Example:
For this shuffle:
shufflevector <4 x i64> %a, <4 x i64> %b, <4 x i32>
<i32 1, i32 0, i32 7, i32 6>
This was expanded to:
vextractf128 $1, %ymm1, %xmm2
vpextrq $0, %xmm2, %rax
vmovd %rax, %xmm1
vpextrq $1, %xmm2, %rax
vmovd %rax, %xmm2
vpunpcklqdq %xmm1, %xmm2, %xmm1
vpextrq $0, %xmm0, %rax
vmovd %rax, %xmm2
vpextrq $1, %xmm0, %rax
vmovd %rax, %xmm0
vpunpcklqdq %xmm2, %xmm0, %xmm0
vinsertf128 $1, %xmm1, %ymm0, %ymm0
ret
Now we get:
vshufpd $1, %xmm0, %xmm0, %xmm0
vextractf128 $1, %ymm1, %xmm1
vshufpd $1, %xmm1, %xmm1, %xmm1
vinsertf128 $1, %xmm1, %ymm0, %ymm0
llvm-svn: 137733
Allow a target assembly parser to do context sensitive constraint checking
on a potential instruction match. This will be used, for example, to handle
Thumb2 IT block parsing.
llvm-svn: 137675