registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
llvm-svn: 105228
optimization level.
This only really affects llc for now because both the llvm-gcc and clang front
ends override the default register allocator. I intend to remove that code later.
llvm-svn: 104904
Mon Ping provided; unfortunately bugpoint failed to
reduce it, but I think it's important to have a test for
this in the suite. 8023512.
llvm-svn: 104624
pass after isel instead of being interlaced with it, we can
trust that all the code for a function has been isel'd before
it is run.
The practical impact of this is that we can scan for machine
instr phis instead of doing a fuzzy match on the LLVM BB for
phi nodes. Doing the fuzzy match required knowing when isel
would produce an fp reg stack phi which was gross. It was
also wrong in cases where select got lowered to a branch
tree because cmovs aren't available (PR6828).
Just do the scan on machine phis which is simpler, faster
and more correct. This fixes PR6828.
llvm-svn: 104333
operand on the left, the interesting operand is on the right. This
fixes a bug where LSR was failing to recognize ICmpZero uses,
which led it to be unable to reverse the induction variable in the
attached testcase.
Delete test/CodeGen/X86/stack-color-with-reg-2.ll, because its test
is extremely fragile and hard to meaningfully update.
llvm-svn: 104262
<1xi64> -> i64 to work in MMX registers on hosts where -no-sse
is the default (not mine). The right thing is
to accept this and make i64->f64 conversions go through memory,
but I don't have time right now.
llvm-svn: 103914
Sorry for the big change. The path leading up to this patch had some TableGen
changes that I didn't want to commit before I knew they were useful. They
weren't, and this version does not need them.
The fast register allocator now does no liveness calculations. Instead it relies
on kill flags provided by isel. (Currently those kill flags are also ignored due
to isel bugs). The allocation algorithm is supposed to work with any subset of
valid kill flags. More kill flags simply means fewer spills inserted.
Registers are allocated from a working set that contains no aliases. That means
most allocations can be done directly without expensive alias checks. When the
working set runs out of registers we do the full alias check to find new free
registers.
llvm-svn: 103488
LSRUse's Regs set after all pruning is done, rather than trying
to do it on the fly, which can produce an incomplete result.
This fixes a case where heuristic pruning was stripping all
formulae from a use, which led the solver to enter an infinite
loop.
Also, add a few asserts to diagnose this kind of situation.
llvm-svn: 103328
getConstantFP to accept the two supported long double
target types. This was not the original intent, but
there are other places that assume this works and it's
easy enough to do.
llvm-svn: 103299
Users can write broken code that emits the same label twice with asm renaming,
detect this and emit a fatal backend error instead of aborting.
llvm-svn: 103140