For processors with the G5-like instruction-grouping scheme, this helps avoid
early group termination due to a write-after-write dependency within the group.
It should also help on pipelined embedded cores.
On POWER7, over the test suite, this gives an average 0.5% speedup. The largest
speedups are:
SingleSource/Benchmarks/Stanford/Quicksort - 33%
MultiSource/Applications/d/make_dparser - 21%
MultiSource/Benchmarks/FreeBench/analyzer/analyzer - 12%
MultiSource/Benchmarks/MiBench/telecomm-FFT/telecomm-fft - 12%
Largest slowdowns:
SingleSource/Benchmarks/Stanford/Bubblesort - 23%
MultiSource/Benchmarks/Prolangs-C++/city/city - 21%
MultiSource/Benchmarks/BitBench/uuencode/uuencode - 16%
MultiSource/Benchmarks/mediabench/mpeg2/mpeg2dec/mpeg2decode - 13%
llvm-svn: 158719
TargetLoweringObjectFileELF. Use this to support it on X86. Unlike ARM,
on X86 it is not easy to find out if .init_array should be used or not, so
the decision is made via TargetOptions and defaults to off.
Add a command line option to llc that enables it.
llvm-svn: 158692
Original commit msg:
add the 'alloc' metadata node to represent the size of offset of buffers pointed to by pointers.
This metadata can be attached to any instruction returning a pointer
llvm-svn: 158688
Based on review discussion of r158638 with Chandler Carruth, Tobias von Koch, and Duncan Sands and a -Wmaybe-uninitialized warning from GCC.
llvm-svn: 158685
This patch changes the type used to hold the FU bitset from unsigned to uint64_t.
This will be needed for some upcoming PowerPC itineraries.
llvm-svn: 158679
The NOP, WFE, WFI, SEV and YIELD instructions are all hints w/
a different immediate value in bits [7,0]. Define a generic HINT
instruction and refactor NOP, WFI, WFI, SEV and YIELD to be
assembly aliases of that.
rdar://11600518
llvm-svn: 158674
When returning a 'cannot match due to missing CPU features' error code,
if there are multiple potential matches with different feature sets,
return the smallest set of missing features from the alternatives as
that's most likely to be the one that's desired.
llvm-svn: 158673
when a compile time constant is known. This occurs when implicitly zero
extending function arguments from 16 bits to 32 bits. The 8 bit case doesn't
need to be handled, as the 8 bit constants are encoded directly, thereby
not needing a separate load instruction to form the constant into a register.
<rdar://problem/11481151>
llvm-svn: 158659
temporarily reverted.
This test is annoyingly overspecified, but I don't know of another way
to thoroughly test the saving and restoring of the registers. While this
will have to be adjusted even with the issue fixed in order to re-apply
r158087, those adjustments should very clearly indicate that it is still
correct (%esp getting restored prior to pops), whereas without it, this
case can easily slip under the radar.
Still, any suggestions for improvements are very welcome.
All credit to Matt Beaumont-Gay for reducing this out of an insane
Address Sanitizer crash to a reasonably small seg-faulting C program
when built with -mstackrealign. I just reduced it to IR, which was much
simpler. =]
llvm-svn: 158656
This patch causes problems when both dynamic stack realignment and
dynamic allocas combine in the same function. With this patch, we no
longer build the epilog correctly, and silently restore registers from
the wrong position in the stack.
Thanks to Matt for tracking this down, and getting at least an initial
test case to Chad. I'm going to try to check a variation of that test
case in so we can easily track the fixes required.
llvm-svn: 158654
It always returns the iterator for the first inserted element, or the passed in
iterator if the inserted range was empty. Flesh out the unit test more and fix
all the cases it uncovered so far.
llvm-svn: 158645
SmallDenseMap::swap.
First, make it parse cleanly. Yay for uninstantiated methods.
Second, make the inline-buckets case work correctly. This is way
trickier than it should be due to the uninitialized values in empty and
tombstone buckets.
Finally fix a few typos that caused construction/destruction mismatches
in the counting unittest.
llvm-svn: 158641
destruction and fix a bug in SmallDenseMap they caught.
This is kind of a poor-man's version of the testing that just adds the
addresses to a set on construction and removes them on destruction. We
check that double construction and double destruction don't occur.
Amusingly enough, this is enough to catch a lot of SmallDenseMap issues
because we spend a lot of time with fixed stable addresses in the inline
buffer.
The SmallDenseMap bug fix included makes grow() not double-destroy in
some cases. It also fixes a FIXME there, the code was pretty crappy. We
now don't have any wasted initialization, but we do move the entries in
inline bucket array an extra time. It's probably a better tradeoff, and
is much easier to get correct.
llvm-svn: 158639
implementation.
This type includes an inline bucket array which is used initially. Once
it is exceeded, an array of 64 buckets is allocated on the heap. The
bucket count grows from there as needed. Some highlights of this
implementation:
- The inline buffer is very carefully aligned, and so supports types
with alignment constraints.
- It works hard to avoid aliasing issues.
- Supports types with non-trivial constructors, destructors, copy
constructions, etc. It works reasonably hard to minimize copies and
unnecessary initialization. The most common initialization is to set
keys to the empty key, and so that should be fast if at all possible.
This class has a performance / space trade-off. It tries to optimize for
relatively small maps, and so packs the inline bucket array densely into
the object. It will be marginally slower than a normal DenseMap in a few
use patterns, so it isn't appropriate everywhere.
The unit tests for DenseMap have been generalized a bit to support
running over different map implementations in addition to different
key/value types. They've then been automatically extended to cover the
new container through the magic of GoogleTest's typed tests.
All of this is still a bit rough though. I'm going to be cleaning up
some aspects of the implementation, documenting things better, and
adding tests which include non-trivial types. As soon as I'm comfortable
with the correctness, I plan to switch existing users of SmallMap over
to this class as it is already more correct w.r.t. construction and
destruction of objects iin the map.
Thanks to Benjamin Kramer for all the reviews of this and the lead-up
patches. That said, more review on this would really be appreciated. As
I've noted a few times, I'm quite surprised how hard it is to get the
semantics for a hashtable-based map container with a small buffer
optimization correct. =]
llvm-svn: 158638
This cleans up the method used to find trip counts in order to form CTR loops on PPC.
This refactoring allows the pass to find loops which have a constant trip count but also
happen to end with a comparison to zero. This also adds explicit FIXMEs to mark two different
classes of loops that are currently ignored.
In addition, we now search through all potential induction operations instead of just the first.
Also, we check the predicate code on the conditional branch and abort the transformation if the
code is not EQ or NE, and we then make sure that the branch to be transformed matches the
condition register defined by the comparison (multiple possible comparisons will be considered).
llvm-svn: 158607
The present implementation handles only TBAA and FP metadata, discarding everything else.
For debug metadata, the current behavior is maintained (the debug metadata associated with
one of the instructions will be kept, discarding that attached to the other).
This should address PR 13040.
llvm-svn: 158606