1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/CodeGen/SelectionDAG/FastISel.cpp

2366 lines
85 KiB
C++
Raw Permalink Normal View History

//===- FastISel.cpp - Implementation of the FastISel class ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the FastISel class.
//
// "Fast" instruction selection is designed to emit very poor code quickly.
// Also, it is not designed to be able to do much lowering, so most illegal
// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
// also not intended to be able to do much optimization, except in a few cases
// where doing optimizations reduces overall compile time. For example, folding
// constants into immediate fields is often done, because it's cheap and it
// reduces the number of instructions later phases have to examine.
//
// "Fast" instruction selection is able to fail gracefully and transfer
// control to the SelectionDAG selector for operations that it doesn't
// support. In many cases, this allows us to avoid duplicating a lot of
// the complicated lowering logic that SelectionDAG currently has.
//
// The intended use for "fast" instruction selection is "-O0" mode
// compilation, where the quality of the generated code is irrelevant when
// weighed against the speed at which the code can be generated. Also,
// at -O0, the LLVM optimizers are not running, and this makes the
// compile time of codegen a much higher portion of the overall compile
// time. Despite its limitations, "fast" instruction selection is able to
// handle enough code on its own to provide noticeable overall speedups
// in -O0 compiles.
//
// Basic operations are supported in a target-independent way, by reading
// the same instruction descriptions that the SelectionDAG selector reads,
// and identifying simple arithmetic operations that can be directly selected
// from simple operators. More complicated operations currently require
// target-specific code.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/FastISel.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "isel"
2011-11-28 20:59:09 +01:00
STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
"target-independent selector");
2011-11-28 20:59:09 +01:00
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
"target-specific selector");
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
/// Set the current block to which generated machine instructions will be
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
/// appended.
void FastISel::startNewBlock() {
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
assert(LocalValueMap.empty() &&
"local values should be cleared after finishing a BB");
2013-07-04 06:53:49 +02:00
// Instructions are appended to FuncInfo.MBB. If the basic block already
// contains labels or copies, use the last instruction as the last local
// value.
EmitStartPt = nullptr;
if (!FuncInfo.MBB->empty())
EmitStartPt = &FuncInfo.MBB->back();
LastLocalValue = EmitStartPt;
}
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
void FastISel::finishBasicBlock() { flushLocalValueMap(); }
bool FastISel::lowerArguments() {
if (!FuncInfo.CanLowerReturn)
// Fallback to SDISel argument lowering code to deal with sret pointer
// parameter.
return false;
if (!fastLowerArguments())
return false;
// Enter arguments into ValueMap for uses in non-entry BBs.
for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
E = FuncInfo.Fn->arg_end();
I != E; ++I) {
DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
assert(VI != LocalValueMap.end() && "Missed an argument?");
FuncInfo.ValueMap[&*I] = VI->second;
}
return true;
}
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
/// Return the defined register if this instruction defines exactly one
/// virtual register and uses no other virtual registers. Otherwise return 0.
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
static Register findLocalRegDef(MachineInstr &MI) {
Register RegDef;
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg())
continue;
if (MO.isDef()) {
if (RegDef)
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
return Register();
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
RegDef = MO.getReg();
} else if (MO.getReg().isVirtual()) {
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
// This is another use of a vreg. Don't delete it.
return Register();
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
}
}
return RegDef;
}
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
static bool isRegUsedByPhiNodes(Register DefReg,
FunctionLoweringInfo &FuncInfo) {
for (auto &P : FuncInfo.PHINodesToUpdate)
if (P.second == DefReg)
return true;
return false;
}
void FastISel::flushLocalValueMap() {
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
// If FastISel bails out, it could leave local value instructions behind
// that aren't used for anything. Detect and erase those.
if (LastLocalValue != EmitStartPt) {
// Save the first instruction after local values, for later.
MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
++FirstNonValue;
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
MachineBasicBlock::reverse_iterator RE =
EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
: FuncInfo.MBB->rend();
MachineBasicBlock::reverse_iterator RI(LastLocalValue);
for (; RI != RE;) {
MachineInstr &LocalMI = *RI;
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
// Increment before erasing what it points to.
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
++RI;
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
Register DefReg = findLocalRegDef(LocalMI);
if (!DefReg)
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
continue;
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
if (FuncInfo.RegsWithFixups.count(DefReg))
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
continue;
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
if (EmitStartPt == &LocalMI)
EmitStartPt = EmitStartPt->getPrevNode();
LLVM_DEBUG(dbgs() << "removing dead local value materialization"
<< LocalMI);
LocalMI.eraseFromParent();
}
}
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
if (FirstNonValue != FuncInfo.MBB->end()) {
// See if there are any local value instructions left. If so, we want to
// make sure the first one has a debug location; if it doesn't, use the
// first non-value instruction's debug location.
// If EmitStartPt is non-null, this block had copies at the top before
// FastISel started doing anything; it points to the last one, so the
// first local value instruction is the one after EmitStartPt.
// If EmitStartPt is null, the first local value instruction is at the
// top of the block.
MachineBasicBlock::iterator FirstLocalValue =
EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
: FuncInfo.MBB->begin();
if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
}
}
LocalValueMap.clear();
LastLocalValue = EmitStartPt;
recomputeInsertPt();
SavedInsertPt = FuncInfo.InsertPt;
}
Register FastISel::getRegForValue(const Value *V) {
EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
// Don't handle non-simple values in FastISel.
if (!RealVT.isSimple())
return Register();
// Ignore illegal types. We must do this before looking up the value
// in ValueMap because Arguments are given virtual registers regardless
// of whether FastISel can handle them.
MVT VT = RealVT.getSimpleVT();
if (!TLI.isTypeLegal(VT)) {
// Handle integer promotions, though, because they're common and easy.
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
else
return Register();
}
// Look up the value to see if we already have a register for it.
Register Reg = lookUpRegForValue(V);
if (Reg)
return Reg;
// In bottom-up mode, just create the virtual register which will be used
// to hold the value. It will be materialized later.
if (isa<Instruction>(V) &&
(!isa<AllocaInst>(V) ||
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
return FuncInfo.InitializeRegForValue(V);
SavePoint SaveInsertPt = enterLocalValueArea();
// Materialize the value in a register. Emit any instructions in the
// local value area.
Reg = materializeRegForValue(V, VT);
leaveLocalValueArea(SaveInsertPt);
return Reg;
}
Register FastISel::materializeConstant(const Value *V, MVT VT) {
Register Reg;
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getValue().getActiveBits() <= 64)
Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
} else if (isa<AllocaInst>(V))
Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
else if (isa<ConstantPointerNull>(V))
// Translate this as an integer zero so that it can be
// local-CSE'd with actual integer zeros.
Reg =
getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
if (CF->isNullValue())
Reg = fastMaterializeFloatZero(CF);
else
// Try to emit the constant directly.
Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
if (!Reg) {
2010-04-13 19:07:06 +02:00
// Try to emit the constant by using an integer constant with a cast.
const APFloat &Flt = CF->getValueAPF();
EVT IntVT = TLI.getPointerTy(DL);
uint32_t IntBitWidth = IntVT.getSizeInBits();
APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
bool isExact;
(void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
if (isExact) {
Register IntegerReg =
getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
if (IntegerReg)
Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
IntegerReg);
}
}
} else if (const auto *Op = dyn_cast<Operator>(V)) {
if (!selectOperator(Op, Op->getOpcode()))
if (!isa<Instruction>(Op) ||
!fastSelectInstruction(cast<Instruction>(Op)))
return 0;
Reg = lookUpRegForValue(Op);
} else if (isa<UndefValue>(V)) {
Reg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
}
return Reg;
}
/// Helper for getRegForValue. This function is called when the value isn't
/// already available in a register and must be materialized with new
/// instructions.
Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
Register Reg;
// Give the target-specific code a try first.
if (isa<Constant>(V))
Reg = fastMaterializeConstant(cast<Constant>(V));
// If target-specific code couldn't or didn't want to handle the value, then
// give target-independent code a try.
if (!Reg)
Reg = materializeConstant(V, VT);
// Don't cache constant materializations in the general ValueMap.
// To do so would require tracking what uses they dominate.
if (Reg) {
LocalValueMap[V] = Reg;
LastLocalValue = MRI.getVRegDef(Reg);
}
return Reg;
}
Register FastISel::lookUpRegForValue(const Value *V) {
// Look up the value to see if we already have a register for it. We
// cache values defined by Instructions across blocks, and other values
// only locally. This is because Instructions already have the SSA
// def-dominates-use requirement enforced.
2020-04-08 18:26:32 +02:00
DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
if (I != FuncInfo.ValueMap.end())
return I->second;
return LocalValueMap[V];
}
void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
if (!isa<Instruction>(I)) {
LocalValueMap[I] = Reg;
return;
}
2020-04-08 18:26:32 +02:00
Register &AssignedReg = FuncInfo.ValueMap[I];
if (!AssignedReg)
// Use the new register.
AssignedReg = Reg;
else if (Reg != AssignedReg) {
// Arrange for uses of AssignedReg to be replaced by uses of Reg.
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
for (unsigned i = 0; i < NumRegs; i++) {
FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
[FastISel] Sink local value materializations to first use Summary: Local values are constants, global addresses, and stack addresses that can't be folded into the instruction that uses them. For example, when storing the address of a global variable into memory, we need to materialize that address into a register. FastISel doesn't want to materialize any given local value more than once, so it generates all local value materialization code at EmitStartPt, which always dominates the current insertion point. This allows it to maintain a map of local value registers, and it knows that the local value area will always dominate the current insertion point. The downside is that local value instructions are always emitted without a source location. This is done to prevent jumpy line tables, but it means that the local value area will be considered part of the previous statement. Consider this C code: call1(); // line 1 ++global; // line 2 ++global; // line 3 call2(&global, &local); // line 4 Today we end up with assembly and line tables like this: .loc 1 1 callq call1 leaq global(%rip), %rdi leaq local(%rsp), %rsi .loc 1 2 addq $1, global(%rip) .loc 1 3 addq $1, global(%rip) .loc 1 4 callq call2 The LEA instructions in the local value area have no source location and are treated as being on line 1. Stepping through the code in a debugger and correlating it with the assembly won't make much sense, because these materializations are only required for line 4. This is actually problematic for the VS debugger "set next statement" feature, which effectively assumes that there are no registers live across statement boundaries. By sinking the local value code into the statement and fixing up the source location, we can make that feature work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and https://crbug.com/793819. This change is obviously not enough to make this feature work reliably in all cases, but I felt that it was worth doing anyway because it usually generates smaller, more comprehensible -O0 code. I measured a 0.12% regression in code generation time with LLC on the sqlite3 amalgamation, so I think this is worth doing. There are some special cases worth calling out in the commit message: 1. local values materialized for phis 2. local values used by no-op casts 3. dead local value code Local values can be materialized for phis, and this does not show up as a vreg use in MachineRegisterInfo. In this case, if there are no other uses, this patch sinks the value to the first terminator, EH label, or the end of the BB if nothing else exists. Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. Lastly, if the local value register has no other uses, we can delete it. This comes up when fastisel tries two instruction selection approaches and the first materializes the value but fails and the second succeeds without using the local value. Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D43093 llvm-svn: 327581
2018-03-14 22:54:21 +01:00
FuncInfo.RegsWithFixups.insert(Reg + i);
}
AssignedReg = Reg;
}
}
Register FastISel::getRegForGEPIndex(const Value *Idx) {
Register IdxN = getRegForValue(Idx);
if (!IdxN)
// Unhandled operand. Halt "fast" selection and bail.
return Register();
// If the index is smaller or larger than intptr_t, truncate or extend it.
MVT PtrVT = TLI.getPointerTy(DL);
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
if (IdxVT.bitsLT(PtrVT)) {
IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
} else if (IdxVT.bitsGT(PtrVT)) {
IdxN =
fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
}
return IdxN;
}
void FastISel::recomputeInsertPt() {
if (getLastLocalValue()) {
FuncInfo.InsertPt = getLastLocalValue();
FuncInfo.MBB = FuncInfo.InsertPt->getParent();
++FuncInfo.InsertPt;
} else
FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
// Now skip past any EH_LABELs, which must remain at the beginning.
while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
++FuncInfo.InsertPt;
}
void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
MachineBasicBlock::iterator E) {
ADT: Remove all ilist_iterator => pointer casts, NFC Remove all ilist_iterator to pointer casts. There were two reasons for casts: - Checking for an uninitialized (i.e., null) iterator. I added MachineInstrBundleIterator::isValid() to check for that case. - Comparing an iterator against the underlying pointer value while avoiding converting the pointer value to an iterator. This is occasionally necessary in MachineInstrBundleIterator, since there is an assertion in the constructors that the underlying MachineInstr is not bundled (but we don't care about that if we're just checking for pointer equality). To support the latter case, I rewrote the == and != operators for ilist_iterator and MachineInstrBundleIterator. - The implicit constructors now use enable_if to exclude const-iterator => non-const-iterator conversions from overload resolution (previously it was a compiler error on instantiation, now it's SFINAE). - The == and != operators are now global (friends), and are not templated. - MachineInstrBundleIterator has overloads to compare against both const_pointer and const_reference. This avoids the implicit conversions to MachineInstrBundleIterator that assert, instead just checking the address (and I added unit tests to confirm this). Notably, the only remaining uses of ilist_iterator::getNodePtrUnchecked are in ilist.h, and no code outside of ilist*.h directly relies on this UB end-iterator-to-pointer conversion anymore. It's still needed for ilist_*sentinel_traits, but I'll clean that up soon. llvm-svn: 278478
2016-08-12 07:05:36 +02:00
assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
"Invalid iterator!");
while (I != E) {
if (SavedInsertPt == I)
SavedInsertPt = E;
if (EmitStartPt == I)
EmitStartPt = E.isValid() ? &*E : nullptr;
if (LastLocalValue == I)
LastLocalValue = E.isValid() ? &*E : nullptr;
MachineInstr *Dead = &*I;
++I;
Dead->eraseFromParent();
++NumFastIselDead;
}
recomputeInsertPt();
}
FastISel::SavePoint FastISel::enterLocalValueArea() {
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
SavePoint OldInsertPt = FuncInfo.InsertPt;
recomputeInsertPt();
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
return OldInsertPt;
}
void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
LastLocalValue = &*std::prev(FuncInfo.InsertPt);
// Restore the previous insert position.
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
FuncInfo.InsertPt = OldInsertPt;
}
bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
if (VT == MVT::Other || !VT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
// We only handle legal types. For example, on x86-32 the instruction
// selector contains all of the 64-bit instructions from x86-64,
// under the assumption that i64 won't be used if the target doesn't
// support it.
if (!TLI.isTypeLegal(VT)) {
// MVT::i1 is special. Allow AND, OR, or XOR because they
// don't require additional zeroing, which makes them easy.
if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
ISDOpcode == ISD::XOR))
VT = TLI.getTypeToTransformTo(I->getContext(), VT);
else
return false;
}
// Check if the first operand is a constant, and handle it as "ri". At -O0,
// we don't have anything that canonicalizes operand order.
if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
2020-05-28 23:54:49 +02:00
Register Op1 = getRegForValue(I->getOperand(1));
if (!Op1)
return false;
Register ResultReg =
fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
VT.getSimpleVT());
if (!ResultReg)
return false;
// We successfully emitted code for the given LLVM Instruction.
updateValueMap(I, ResultReg);
return true;
}
Register Op0 = getRegForValue(I->getOperand(0));
if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
return false;
// Check if the second operand is a constant and handle it appropriately.
if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t Imm = CI->getSExtValue();
// Transform "sdiv exact X, 8" -> "sra X, 3".
if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
Imm = Log2_64(Imm);
ISDOpcode = ISD::SRA;
}
// Transform "urem x, pow2" -> "and x, pow2-1".
if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
isPowerOf2_64(Imm)) {
--Imm;
ISDOpcode = ISD::AND;
}
Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
VT.getSimpleVT());
if (!ResultReg)
return false;
// We successfully emitted code for the given LLVM Instruction.
updateValueMap(I, ResultReg);
return true;
}
Register Op1 = getRegForValue(I->getOperand(1));
if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
return false;
// Now we have both operands in registers. Emit the instruction.
Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
ISDOpcode, Op0, Op1);
if (!ResultReg)
// Target-specific code wasn't able to find a machine opcode for
// the given ISD opcode and type. Halt "fast" selection and bail.
return false;
// We successfully emitted code for the given LLVM Instruction.
updateValueMap(I, ResultReg);
return true;
}
bool FastISel::selectGetElementPtr(const User *I) {
Register N = getRegForValue(I->getOperand(0));
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
// FIXME: The code below does not handle vector GEPs. Halt "fast" selection
// and bail.
if (isa<VectorType>(I->getType()))
return false;
// Keep a running tab of the total offset to coalesce multiple N = N + Offset
// into a single N = N + TotalOffset.
uint64_t TotalOffs = 0;
// FIXME: What's a good SWAG number for MaxOffs?
uint64_t MaxOffs = 2048;
MVT VT = TLI.getPointerTy(DL);
for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
GTI != E; ++GTI) {
const Value *Idx = GTI.getOperand();
if (StructType *StTy = GTI.getStructTypeOrNull()) {
uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
if (Field) {
// N = N + Offset
TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
if (TotalOffs >= MaxOffs) {
N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
TotalOffs = 0;
}
}
} else {
Type *Ty = GTI.getIndexedType();
// If this is a constant subscript, handle it quickly.
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->isZero())
continue;
// N = N + Offset
uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
if (TotalOffs >= MaxOffs) {
N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
TotalOffs = 0;
}
continue;
}
if (TotalOffs) {
N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
TotalOffs = 0;
}
// N = N + Idx * ElementSize;
uint64_t ElementSize = DL.getTypeAllocSize(Ty);
Register IdxN = getRegForGEPIndex(Idx);
if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
return false;
if (ElementSize != 1) {
IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
return false;
}
N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
}
}
if (TotalOffs) {
N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
if (!N) // Unhandled operand. Halt "fast" selection and bail.
return false;
}
// We successfully emitted code for the given LLVM Instruction.
updateValueMap(I, N);
return true;
}
bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
const CallInst *CI, unsigned StartIdx) {
for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
Value *Val = CI->getArgOperand(i);
// Check for constants and encode them with a StackMaps::ConstantOp prefix.
if (const auto *C = dyn_cast<ConstantInt>(Val)) {
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
} else if (isa<ConstantPointerNull>(Val)) {
Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
Ops.push_back(MachineOperand::CreateImm(0));
} else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
// Values coming from a stack location also require a special encoding,
// but that is added later on by the target specific frame index
// elimination implementation.
auto SI = FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end())
Ops.push_back(MachineOperand::CreateFI(SI->second));
else
return false;
} else {
Register Reg = getRegForValue(Val);
if (!Reg)
return false;
Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
}
}
return true;
}
bool FastISel::selectStackmap(const CallInst *I) {
// void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
// [live variables...])
assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
"Stackmap cannot return a value.");
// The stackmap intrinsic only records the live variables (the arguments
// passed to it) and emits NOPS (if requested). Unlike the patchpoint
// intrinsic, this won't be lowered to a function call. This means we don't
// have to worry about calling conventions and target-specific lowering code.
// Instead we perform the call lowering right here.
//
Add extra operand to CALLSEQ_START to keep frame part set up previously Using arguments with attribute inalloca creates problems for verification of machine representation. This attribute instructs the backend that the argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size stored in CALLSEQ_START in this case does not count the size of this argument. However CALLSEQ_END still keeps total frame size, as caller can be responsible for cleanup of entire frame. So CALLSEQ_START and CALLSEQ_END keep different frame size and the difference is treated by MachineVerifier as stack error. Currently there is no way to distinguish this case from actual errors. This patch adds additional argument to CALLSEQ_START and its target-specific counterparts to keep size of stack that is set up prior to the call frame sequence. This argument allows MachineVerifier to calculate actual frame size associated with frame setup instruction and correctly process the case of inalloca arguments. The changes made by the patch are: - Frame setup instructions get the second mandatory argument. It affects all targets that use frame pseudo instructions and touched many files although the changes are uniform. - Access to frame properties are implemented using special instructions rather than calls getOperand(N).getImm(). For X86 and ARM such replacement was made previously. - Changes that reflect appearance of additional argument of frame setup instruction. These involve proper instruction initialization and methods that access instruction arguments. - MachineVerifier retrieves frame size using method, which reports sum of frame parts initialized inside frame instruction pair and outside it. The patch implements approach proposed by Quentin Colombet in https://bugs.llvm.org/show_bug.cgi?id=27481#c1. It fixes 9 tests failed with machine verifier enabled and listed in PR27481. Differential Revision: https://reviews.llvm.org/D32394 llvm-svn: 302527
2017-05-09 15:35:13 +02:00
// CALLSEQ_START(0, 0...)
// STACKMAP(id, nbytes, ...)
// CALLSEQ_END(0, 0)
//
SmallVector<MachineOperand, 32> Ops;
// Add the <id> and <numBytes> constants.
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
"Expected a constant integer.");
const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
"Expected a constant integer.");
const auto *NumBytes =
cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
// Push live variables for the stack map (skipping the first two arguments
// <id> and <numBytes>).
if (!addStackMapLiveVars(Ops, I, 2))
return false;
// We are not adding any register mask info here, because the stackmap doesn't
// clobber anything.
// Add scratch registers as implicit def and early clobber.
CallingConv::ID CC = I->getCallingConv();
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
for (unsigned i = 0; ScratchRegs[i]; ++i)
Ops.push_back(MachineOperand::CreateReg(
ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
/*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
auto Builder =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
Builder.addImm(0);
// Issue STACKMAP.
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::STACKMAP));
for (auto const &MO : Ops)
MIB.add(MO);
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
.addImm(0)
.addImm(0);
// Inform the Frame Information that we have a stackmap in this function.
FuncInfo.MF->getFrameInfo().setHasStackMap();
return true;
}
/// Lower an argument list according to the target calling convention.
///
/// This is a helper for lowering intrinsics that follow a target calling
/// convention or require stack pointer adjustment. Only a subset of the
/// intrinsic's operands need to participate in the calling convention.
bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
unsigned NumArgs, const Value *Callee,
bool ForceRetVoidTy, CallLoweringInfo &CLI) {
ArgListTy Args;
Args.reserve(NumArgs);
// Populate the argument list.
for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
Value *V = CI->getOperand(ArgI);
assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
ArgListEntry Entry;
Entry.Val = V;
Entry.Ty = V->getType();
Entry.setAttributes(CI, ArgI);
Args.push_back(Entry);
}
Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
: CI->getType();
CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
return lowerCallTo(CLI);
}
FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
SmallString<32> MangledName;
Mangler::getNameWithPrefix(MangledName, Target, DL);
MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
}
bool FastISel::selectPatchpoint(const CallInst *I) {
// void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
// i32 <numBytes>,
// i8* <target>,
// i32 <numArgs>,
// [Args...],
// [live variables...])
CallingConv::ID CC = I->getCallingConv();
bool IsAnyRegCC = CC == CallingConv::AnyReg;
bool HasDef = !I->getType()->isVoidTy();
Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
// Get the real number of arguments participating in the call <numArgs>
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
"Expected a constant integer.");
const auto *NumArgsVal =
cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
unsigned NumArgs = NumArgsVal->getZExtValue();
// Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
// This includes all meta-operands up to but not including CC.
unsigned NumMetaOpers = PatchPointOpers::CCPos;
assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
"Not enough arguments provided to the patchpoint intrinsic");
// For AnyRegCC the arguments are lowered later on manually.
unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
CallLoweringInfo CLI;
CLI.setIsPatchPoint();
if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
return false;
assert(CLI.Call && "No call instruction specified.");
SmallVector<MachineOperand, 32> Ops;
// Add an explicit result reg if we use the anyreg calling convention.
if (IsAnyRegCC && HasDef) {
assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
CLI.NumResultRegs = 1;
Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
}
// Add the <id> and <numBytes> constants.
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
"Expected a constant integer.");
const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
"Expected a constant integer.");
const auto *NumBytes =
cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
// Add the call target.
if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
uint64_t CalleeConstAddr =
cast<ConstantInt>(C->getOperand(0))->getZExtValue();
Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
} else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
if (C->getOpcode() == Instruction::IntToPtr) {
uint64_t CalleeConstAddr =
cast<ConstantInt>(C->getOperand(0))->getZExtValue();
Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
} else
llvm_unreachable("Unsupported ConstantExpr.");
} else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
Ops.push_back(MachineOperand::CreateGA(GV, 0));
} else if (isa<ConstantPointerNull>(Callee))
Ops.push_back(MachineOperand::CreateImm(0));
else
llvm_unreachable("Unsupported callee address.");
// Adjust <numArgs> to account for any arguments that have been passed on
// the stack instead.
unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
// Add the calling convention
Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
// Add the arguments we omitted previously. The register allocator should
// place these in any free register.
if (IsAnyRegCC) {
for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
Register Reg = getRegForValue(I->getArgOperand(i));
if (!Reg)
return false;
Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
}
}
// Push the arguments from the call instruction.
for (auto Reg : CLI.OutRegs)
Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
// Push live variables for the stack map.
if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
return false;
// Push the register mask info.
Ops.push_back(MachineOperand::CreateRegMask(
TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
// Add scratch registers as implicit def and early clobber.
const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
for (unsigned i = 0; ScratchRegs[i]; ++i)
Ops.push_back(MachineOperand::CreateReg(
ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
/*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
// Add implicit defs (return values).
for (auto Reg : CLI.InRegs)
Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
/*isImp=*/true));
// Insert the patchpoint instruction before the call generated by the target.
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
TII.get(TargetOpcode::PATCHPOINT));
for (auto &MO : Ops)
MIB.add(MO);
MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
// Delete the original call instruction.
CLI.Call->eraseFromParent();
// Inform the Frame Information that we have a patchpoint in this function.
FuncInfo.MF->getFrameInfo().setHasPatchPoint();
if (CLI.NumResultRegs)
updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
return true;
}
bool FastISel::selectXRayCustomEvent(const CallInst *I) {
const auto &Triple = TM.getTargetTriple();
if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
return true; // don't do anything to this instruction.
SmallVector<MachineOperand, 8> Ops;
Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
/*isDef=*/false));
Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
/*isDef=*/false));
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
for (auto &MO : Ops)
MIB.add(MO);
// Insert the Patchable Event Call instruction, that gets lowered properly.
return true;
}
bool FastISel::selectXRayTypedEvent(const CallInst *I) {
const auto &Triple = TM.getTargetTriple();
if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
return true; // don't do anything to this instruction.
SmallVector<MachineOperand, 8> Ops;
Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
/*isDef=*/false));
Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
/*isDef=*/false));
Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
/*isDef=*/false));
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
for (auto &MO : Ops)
MIB.add(MO);
// Insert the Patchable Typed Event Call instruction, that gets lowered properly.
return true;
}
/// Returns an AttributeList representing the attributes applied to the return
/// value of the given call.
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
SmallVector<Attribute::AttrKind, 2> Attrs;
if (CLI.RetSExt)
Attrs.push_back(Attribute::SExt);
if (CLI.RetZExt)
Attrs.push_back(Attribute::ZExt);
if (CLI.IsInReg)
Attrs.push_back(Attribute::InReg);
return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
Attrs);
}
bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
unsigned NumArgs) {
MCContext &Ctx = MF->getContext();
SmallString<32> MangledName;
Mangler::getNameWithPrefix(MangledName, SymName, DL);
MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
return lowerCallTo(CI, Sym, NumArgs);
}
bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
unsigned NumArgs) {
FunctionType *FTy = CI->getFunctionType();
Type *RetTy = CI->getType();
ArgListTy Args;
Args.reserve(NumArgs);
// Populate the argument list.
// Attributes for args start at offset 1, after the return attribute.
for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
Value *V = CI->getOperand(ArgI);
assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
ArgListEntry Entry;
Entry.Val = V;
Entry.Ty = V->getType();
Entry.setAttributes(CI, ArgI);
Args.push_back(Entry);
}
TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
CallLoweringInfo CLI;
CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
return lowerCallTo(CLI);
}
bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
// Handle the incoming return values from the call.
CLI.clearIns();
SmallVector<EVT, 4> RetTys;
ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
bool CanLowerReturn = TLI.CanLowerReturn(
CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
// FIXME: sret demotion isn't supported yet - bail out.
if (!CanLowerReturn)
return false;
for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
EVT VT = RetTys[I];
MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
for (unsigned i = 0; i != NumRegs; ++i) {
ISD::InputArg MyFlags;
MyFlags.VT = RegisterVT;
MyFlags.ArgVT = VT;
MyFlags.Used = CLI.IsReturnValueUsed;
if (CLI.RetSExt)
MyFlags.Flags.setSExt();
if (CLI.RetZExt)
MyFlags.Flags.setZExt();
if (CLI.IsInReg)
MyFlags.Flags.setInReg();
CLI.Ins.push_back(MyFlags);
}
}
// Handle all of the outgoing arguments.
CLI.clearOuts();
for (auto &Arg : CLI.getArgs()) {
Type *FinalType = Arg.Ty;
if (Arg.IsByVal)
FinalType = Arg.IndirectType;
bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
[llvm][AArch64] Handle arrays of struct properly (from IR) This only applies to FastIsel. GlobalIsel seems to sidestep the issue. This fixes https://bugs.llvm.org/show_bug.cgi?id=46996 One of the things we do in llvm is decide if a type needs consecutive registers. Previously, we just checked if it was an array or not. (plus an SVE specific check that is not changing here) This causes some confusion when you arbitrary IR like: ``` %T1 = type { double, i1 }; define [ 1 x %T1 ] @foo() { entry: ret [ 1 x %T1 ] zeroinitializer } ``` We see it is an array so we call CC_AArch64_Custom_Block which bails out when it sees the i1, a type we don't want to put into a block. This leaves the location of the double in some kind of intermediate state and leads to odd codegen. Which then crashes the backend because it doesn't know how to implement what it's been asked for. You get this: ``` renamable $d0 = FMOVD0 $w0 = COPY killed renamable $d0 ``` Rather than this: ``` $d0 = FMOVD0 $w0 = COPY $wzr ``` The backend knows how to copy 64 bit to 64 bit registers, but not 64 to 32. It can certainly be taught how but the real issue seems to be us even trying to assign a register block in the first place. This change makes the logic of AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters a bit more in depth. If we find an array, also check that all the nested aggregates in that array have a single member type. Then CC_AArch64_Custom_Block's assumption of a type that looks like [ N x type ] will be valid and we get the expected codegen. New tests have been added to exercise these situations. Note that some of the output is not ABI compliant. The aim of this change is to simply handle these situations and not to make our processing of arbitrary IR ABI compliant. Reviewed By: efriedma Differential Revision: https://reviews.llvm.org/D104123
2021-06-09 18:36:39 +02:00
FinalType, CLI.CallConv, CLI.IsVarArg, DL);
ISD::ArgFlagsTy Flags;
if (Arg.IsZExt)
Flags.setZExt();
if (Arg.IsSExt)
Flags.setSExt();
if (Arg.IsInReg)
Flags.setInReg();
if (Arg.IsSRet)
Flags.setSRet();
if (Arg.IsSwiftSelf)
Flags.setSwiftSelf();
if (Arg.IsSwiftAsync)
Flags.setSwiftAsync();
if (Arg.IsSwiftError)
Flags.setSwiftError();
if (Arg.IsCFGuardTarget)
Flags.setCFGuardTarget();
if (Arg.IsByVal)
Flags.setByVal();
if (Arg.IsInAlloca) {
Flags.setInAlloca();
// Set the byval flag for CCAssignFn callbacks that don't know about
// inalloca. This way we can know how many bytes we should've allocated
// and how many bytes a callee cleanup function will pop. If we port
// inalloca to more targets, we'll have to add custom inalloca handling in
// the various CC lowering callbacks.
Flags.setByVal();
}
Reland [X86] Codegen for preallocated See https://reviews.llvm.org/D74651 for the preallocated IR constructs and LangRef changes. In X86TargetLowering::LowerCall(), if a call is preallocated, record each argument's offset from the stack pointer and the total stack adjustment. Associate the call Value with an integer index. Store the info in X86MachineFunctionInfo with the integer index as the key. This adds two new target independent ISDOpcodes and two new target dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}. The setup ISelDAG node takes in a chain and outputs a chain and a SrcValue of the preallocated call Value. It is lowered to a target dependent node with the SrcValue replaced with the integer index key by looking in X86MachineFunctionInfo. In X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an %esp adjustment, the exact amount determined by looking in X86MachineFunctionInfo with the integer index key. The arg ISelDAG node takes in a chain, a SrcValue of the preallocated call Value, and the arg index int constant. It produces a chain and the pointer fo the arg. It is lowered to a target dependent node with the SrcValue replaced with the integer index key by looking in X86MachineFunctionInfo. In X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a lea of the stack pointer plus an offset determined by looking in X86MachineFunctionInfo with the integer index key. Force any function containing a preallocated call to use the frame pointer. Does not yet handle a setup without a call, or a conditional call. Does not yet handle musttail. That requires a LangRef change first. Tried to look at all references to inalloca and see if they apply to preallocated. I've made preallocated versions of tests testing inalloca whenever possible and when they make sense (e.g. not alloca related, inalloca edge cases). Aside from the tests added here, I checked that this codegen produces correct code for something like ``` struct A { A(); A(A&&); ~A(); }; void bar() { foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8); } ``` by replacing the inalloca version of the .ll file with the appropriate preallocated code. Running the executable produces the same results as using the current inalloca implementation. Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland. Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D77689
2020-03-16 20:32:36 +01:00
if (Arg.IsPreallocated) {
Flags.setPreallocated();
// Set the byval flag for CCAssignFn callbacks that don't know about
// preallocated. This way we can know how many bytes we should've
// allocated and how many bytes a callee cleanup function will pop. If we
// port preallocated to more targets, we'll have to add custom
// preallocated handling in the various CC lowering callbacks.
Flags.setByVal();
}
[clang][AArch64] Correctly align HFA arguments when passed on the stack When we pass a AArch64 Homogeneous Floating-Point Aggregate (HFA) argument with increased alignment requirements, for example struct S { __attribute__ ((__aligned__(16))) double v[4]; }; Clang uses `[4 x double]` for the parameter, which is passed on the stack at alignment 8, whereas it should be at alignment 16, following Rule C.4 in AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules) Currently we don't have a way to express in LLVM IR the alignment requirements of the function arguments. The align attribute is applicable to pointers only, and only for some special ways of passing arguments (e..g byval). When implementing AAPCS32/AAPCS64, clang resorts to dubious hacks of coercing to types, which naturally have the needed alignment. We don't have enough types to cover all the cases, though. This patch introduces a new use of the stackalign attribute to control stack slot alignment, when and if an argument is passed in memory. The attribute align is left as an optimizer hint - it still applies to pointer types only and pertains to the content of the pointer, whereas the alignment of the pointer itself is determined by the stackalign attribute. For byval arguments, the stackalign attribute assumes the role, previously perfomed by align, falling back to align if stackalign` is absent. On the clang side, when passing arguments using the "direct" style (cf. `ABIArgInfo::Kind`), now we can optionally specify an alignment, which is emitted as the new `stackalign` attribute. Patch by Momchil Velikov and Lucas Prates. Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 20:58:54 +02:00
MaybeAlign MemAlign = Arg.Alignment;
Reland [X86] Codegen for preallocated See https://reviews.llvm.org/D74651 for the preallocated IR constructs and LangRef changes. In X86TargetLowering::LowerCall(), if a call is preallocated, record each argument's offset from the stack pointer and the total stack adjustment. Associate the call Value with an integer index. Store the info in X86MachineFunctionInfo with the integer index as the key. This adds two new target independent ISDOpcodes and two new target dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}. The setup ISelDAG node takes in a chain and outputs a chain and a SrcValue of the preallocated call Value. It is lowered to a target dependent node with the SrcValue replaced with the integer index key by looking in X86MachineFunctionInfo. In X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an %esp adjustment, the exact amount determined by looking in X86MachineFunctionInfo with the integer index key. The arg ISelDAG node takes in a chain, a SrcValue of the preallocated call Value, and the arg index int constant. It produces a chain and the pointer fo the arg. It is lowered to a target dependent node with the SrcValue replaced with the integer index key by looking in X86MachineFunctionInfo. In X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a lea of the stack pointer plus an offset determined by looking in X86MachineFunctionInfo with the integer index key. Force any function containing a preallocated call to use the frame pointer. Does not yet handle a setup without a call, or a conditional call. Does not yet handle musttail. That requires a LangRef change first. Tried to look at all references to inalloca and see if they apply to preallocated. I've made preallocated versions of tests testing inalloca whenever possible and when they make sense (e.g. not alloca related, inalloca edge cases). Aside from the tests added here, I checked that this codegen produces correct code for something like ``` struct A { A(); A(A&&); ~A(); }; void bar() { foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8); } ``` by replacing the inalloca version of the .ll file with the appropriate preallocated code. Running the executable produces the same results as using the current inalloca implementation. Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland. Subscribers: hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D77689
2020-03-16 20:32:36 +01:00
if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
// For ByVal, alignment should come from FE. BE will guess if this info
// is not there, but there are cases it cannot get right.
[clang][AArch64] Correctly align HFA arguments when passed on the stack When we pass a AArch64 Homogeneous Floating-Point Aggregate (HFA) argument with increased alignment requirements, for example struct S { __attribute__ ((__aligned__(16))) double v[4]; }; Clang uses `[4 x double]` for the parameter, which is passed on the stack at alignment 8, whereas it should be at alignment 16, following Rule C.4 in AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules) Currently we don't have a way to express in LLVM IR the alignment requirements of the function arguments. The align attribute is applicable to pointers only, and only for some special ways of passing arguments (e..g byval). When implementing AAPCS32/AAPCS64, clang resorts to dubious hacks of coercing to types, which naturally have the needed alignment. We don't have enough types to cover all the cases, though. This patch introduces a new use of the stackalign attribute to control stack slot alignment, when and if an argument is passed in memory. The attribute align is left as an optimizer hint - it still applies to pointer types only and pertains to the content of the pointer, whereas the alignment of the pointer itself is determined by the stackalign attribute. For byval arguments, the stackalign attribute assumes the role, previously perfomed by align, falling back to align if stackalign` is absent. On the clang side, when passing arguments using the "direct" style (cf. `ABIArgInfo::Kind`), now we can optionally specify an alignment, which is emitted as the new `stackalign` attribute. Patch by Momchil Velikov and Lucas Prates. Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 20:58:54 +02:00
if (!MemAlign)
MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
Flags.setByValSize(FrameSize);
[clang][AArch64] Correctly align HFA arguments when passed on the stack When we pass a AArch64 Homogeneous Floating-Point Aggregate (HFA) argument with increased alignment requirements, for example struct S { __attribute__ ((__aligned__(16))) double v[4]; }; Clang uses `[4 x double]` for the parameter, which is passed on the stack at alignment 8, whereas it should be at alignment 16, following Rule C.4 in AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules) Currently we don't have a way to express in LLVM IR the alignment requirements of the function arguments. The align attribute is applicable to pointers only, and only for some special ways of passing arguments (e..g byval). When implementing AAPCS32/AAPCS64, clang resorts to dubious hacks of coercing to types, which naturally have the needed alignment. We don't have enough types to cover all the cases, though. This patch introduces a new use of the stackalign attribute to control stack slot alignment, when and if an argument is passed in memory. The attribute align is left as an optimizer hint - it still applies to pointer types only and pertains to the content of the pointer, whereas the alignment of the pointer itself is determined by the stackalign attribute. For byval arguments, the stackalign attribute assumes the role, previously perfomed by align, falling back to align if stackalign` is absent. On the clang side, when passing arguments using the "direct" style (cf. `ABIArgInfo::Kind`), now we can optionally specify an alignment, which is emitted as the new `stackalign` attribute. Patch by Momchil Velikov and Lucas Prates. Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 20:58:54 +02:00
} else if (!MemAlign) {
MemAlign = DL.getABITypeAlign(Arg.Ty);
}
[clang][AArch64] Correctly align HFA arguments when passed on the stack When we pass a AArch64 Homogeneous Floating-Point Aggregate (HFA) argument with increased alignment requirements, for example struct S { __attribute__ ((__aligned__(16))) double v[4]; }; Clang uses `[4 x double]` for the parameter, which is passed on the stack at alignment 8, whereas it should be at alignment 16, following Rule C.4 in AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules) Currently we don't have a way to express in LLVM IR the alignment requirements of the function arguments. The align attribute is applicable to pointers only, and only for some special ways of passing arguments (e..g byval). When implementing AAPCS32/AAPCS64, clang resorts to dubious hacks of coercing to types, which naturally have the needed alignment. We don't have enough types to cover all the cases, though. This patch introduces a new use of the stackalign attribute to control stack slot alignment, when and if an argument is passed in memory. The attribute align is left as an optimizer hint - it still applies to pointer types only and pertains to the content of the pointer, whereas the alignment of the pointer itself is determined by the stackalign attribute. For byval arguments, the stackalign attribute assumes the role, previously perfomed by align, falling back to align if stackalign` is absent. On the clang side, when passing arguments using the "direct" style (cf. `ABIArgInfo::Kind`), now we can optionally specify an alignment, which is emitted as the new `stackalign` attribute. Patch by Momchil Velikov and Lucas Prates. Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 20:58:54 +02:00
Flags.setMemAlign(*MemAlign);
if (Arg.IsNest)
Flags.setNest();
if (NeedsRegBlock)
Flags.setInConsecutiveRegs();
Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
CLI.OutVals.push_back(Arg.Val);
CLI.OutFlags.push_back(Flags);
}
if (!fastLowerCall(CLI))
return false;
// Set all unused physreg defs as dead.
assert(CLI.Call && "No call instruction specified.");
CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
if (CLI.NumResultRegs && CLI.CB)
updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
// Set labels for heapallocsite call.
if (CLI.CB)
if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
CLI.Call->setHeapAllocMarker(*MF, MD);
return true;
}
bool FastISel::lowerCall(const CallInst *CI) {
FunctionType *FuncTy = CI->getFunctionType();
Type *RetTy = CI->getType();
ArgListTy Args;
ArgListEntry Entry;
Args.reserve(CI->arg_size());
for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
Value *V = *i;
// Skip empty types
if (V->getType()->isEmptyTy())
continue;
Entry.Val = V;
Entry.Ty = V->getType();
// Skip the first return-type Attribute to get to params.
Entry.setAttributes(CI, i - CI->arg_begin());
Args.push_back(Entry);
}
// Check if target-independent constraints permit a tail call here.
// Target-dependent constraints are checked within fastLowerCall.
bool IsTailCall = CI->isTailCall();
if (IsTailCall && !isInTailCallPosition(*CI, TM))
IsTailCall = false;
if (IsTailCall && MF->getFunction()
.getFnAttribute("disable-tail-calls")
.getValueAsBool())
IsTailCall = false;
CallLoweringInfo CLI;
CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
.setTailCall(IsTailCall);
return lowerCallTo(CLI);
}
bool FastISel::selectCall(const User *I) {
const CallInst *Call = cast<CallInst>(I);
// Handle simple inline asms.
if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
// Don't attempt to handle constraints.
if (!IA->getConstraintString().empty())
return false;
unsigned ExtraInfo = 0;
if (IA->hasSideEffects())
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
if (IA->isAlignStack())
ExtraInfo |= InlineAsm::Extra_IsAlignStack;
if (Call->isConvergent())
ExtraInfo |= InlineAsm::Extra_IsConvergent;
ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::INLINEASM));
MIB.addExternalSymbol(IA->getAsmString().c_str());
MIB.addImm(ExtraInfo);
const MDNode *SrcLoc = Call->getMetadata("srcloc");
if (SrcLoc)
MIB.addMetadata(SrcLoc);
return true;
}
// Handle intrinsic function calls.
if (const auto *II = dyn_cast<IntrinsicInst>(Call))
return selectIntrinsicCall(II);
return lowerCall(Call);
}
bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
switch (II->getIntrinsicID()) {
default:
break;
// At -O0 we don't care about the lifetime intrinsics.
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
// The donothing intrinsic does, well, nothing.
case Intrinsic::donothing:
// Neither does the sideeffect intrinsic.
case Intrinsic::sideeffect:
// Neither does the assume intrinsic; it's also OK not to codegen its operand.
case Intrinsic::assume:
// Neither does the llvm.experimental.noalias.scope.decl intrinsic
case Intrinsic::experimental_noalias_scope_decl:
return true;
case Intrinsic::dbg_declare: {
const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
assert(DI->getVariable() && "Missing variable");
if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< " (!hasDebugInfo)\n");
return true;
}
const Value *Address = DI->getAddress();
if (!Address || isa<UndefValue>(Address)) {
LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< " (bad/undef address)\n");
return true;
}
// Byval arguments with frame indices were already handled after argument
// lowering and before isel.
const auto *Arg =
dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
return true;
Optional<MachineOperand> Op;
if (Register Reg = lookUpRegForValue(Address))
Op = MachineOperand::CreateReg(Reg, false);
// If we have a VLA that has a "use" in a metadata node that's then used
// here but it has no other uses, then we have a problem. E.g.,
//
// int foo (const int *x) {
// char a[*x];
// return 0;
// }
//
// If we assign 'a' a vreg and fast isel later on has to use the selection
// DAG isel, it will want to copy the value to the vreg. However, there are
// no uses, which goes counter to what selection DAG isel expects.
if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
(!isa<AllocaInst>(Address) ||
!FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
false);
if (Op) {
assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
"Expected inlined-at fields to agree");
// A dbg.declare describes the address of a source variable, so lower it
// into an indirect DBG_VALUE.
auto Builder =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
DI->getVariable(), DI->getExpression());
// If using instruction referencing, mutate this into a DBG_INSTR_REF,
// to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
// the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
if (TM.Options.ValueTrackingVariableLocations && Op->isReg()) {
Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
Builder->getOperand(1).ChangeToImmediate(0);
auto *NewExpr =
DIExpression::prepend(DI->getExpression(), DIExpression::DerefBefore);
Builder->getOperand(3).setMetadata(NewExpr);
}
} else {
// We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info.
LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< " (no materialized reg for address)\n");
}
return true;
}
case Intrinsic::dbg_value: {
// This form of DBG_VALUE is target-independent.
const DbgValueInst *DI = cast<DbgValueInst>(II);
const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
const Value *V = DI->getValue();
assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
"Expected inlined-at fields to agree");
if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
// DI is either undef or cannot produce a valid DBG_VALUE, so produce an
// undef DBG_VALUE to terminate any prior location.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
DI->getVariable(), DI->getExpression());
} else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getBitWidth() > 64)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addCImm(CI)
.addImm(0U)
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-01 20:55:02 +02:00
.addMetadata(DI->getVariable())
.addMetadata(DI->getExpression());
2012-07-06 19:44:22 +02:00
else
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addImm(CI->getZExtValue())
.addImm(0U)
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-01 20:55:02 +02:00
.addMetadata(DI->getVariable())
.addMetadata(DI->getExpression());
} else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addFPImm(CF)
.addImm(0U)
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-01 20:55:02 +02:00
.addMetadata(DI->getVariable())
.addMetadata(DI->getExpression());
} else if (Register Reg = lookUpRegForValue(V)) {
// FIXME: This does not handle register-indirect values at offset 0.
bool IsIndirect = false;
auto Builder =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
DI->getVariable(), DI->getExpression());
// If using instruction referencing, mutate this into a DBG_INSTR_REF,
// to be later patched up by finalizeDebugInstrRefs.
if (TM.Options.ValueTrackingVariableLocations) {
Builder->setDesc(TII.get(TargetOpcode::DBG_INSTR_REF));
Builder->getOperand(1).ChangeToImmediate(0);
}
} else {
// We don't know how to handle other cases, so we drop.
LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
}
return true;
}
case Intrinsic::dbg_label: {
const DbgLabelInst *DI = cast<DbgLabelInst>(II);
assert(DI->getLabel() && "Missing label");
if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
return true;
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
return true;
}
case Intrinsic::objectsize:
llvm_unreachable("llvm.objectsize.* should have been lowered already");
case Intrinsic::is_constant:
llvm_unreachable("llvm.is.constant.* should have been lowered already");
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::expect: {
Register ResultReg = getRegForValue(II->getArgOperand(0));
if (!ResultReg)
return false;
updateValueMap(II, ResultReg);
return true;
}
case Intrinsic::experimental_stackmap:
return selectStackmap(II);
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
return selectPatchpoint(II);
case Intrinsic::xray_customevent:
return selectXRayCustomEvent(II);
case Intrinsic::xray_typedevent:
return selectXRayTypedEvent(II);
}
2010-04-13 19:07:06 +02:00
return fastLowerIntrinsicCall(II);
}
bool FastISel::selectCast(const User *I, unsigned Opcode) {
EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(DL, I->getType());
if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
!DstVT.isSimple())
// Unhandled type. Halt "fast" selection and bail.
return false;
// Check if the destination type is legal.
if (!TLI.isTypeLegal(DstVT))
return false;
// Check if the source operand is legal.
if (!TLI.isTypeLegal(SrcVT))
return false;
Register InputReg = getRegForValue(I->getOperand(0));
if (!InputReg)
// Unhandled operand. Halt "fast" selection and bail.
return false;
Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
Opcode, InputReg);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool FastISel::selectBitCast(const User *I) {
// If the bitcast doesn't change the type, just use the operand value.
if (I->getType() == I->getOperand(0)->getType()) {
Register Reg = getRegForValue(I->getOperand(0));
if (!Reg)
return false;
updateValueMap(I, Reg);
return true;
}
// Bitcasts of other values become reg-reg copies or BITCAST operators.
EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
EVT DstEVT = TLI.getValueType(DL, I->getType());
if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
!TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
// Unhandled type. Halt "fast" selection and bail.
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DstVT = DstEVT.getSimpleVT();
Register Op0 = getRegForValue(I->getOperand(0));
if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
return false;
// First, try to perform the bitcast by inserting a reg-reg copy.
Register ResultReg;
if (SrcVT == DstVT) {
const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
// Don't attempt a cross-class copy. It will likely fail.
if (SrcClass == DstClass) {
ResultReg = createResultReg(DstClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
}
}
// If the reg-reg copy failed, select a BITCAST opcode.
if (!ResultReg)
ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool FastISel::selectFreeze(const User *I) {
Register Reg = getRegForValue(I->getOperand(0));
if (!Reg)
// Unhandled operand.
return false;
EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
// Unhandled type, bail out.
return false;
MVT Ty = ETy.getSimpleVT();
const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
Register ResultReg = createResultReg(TyRegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
updateValueMap(I, ResultReg);
return true;
}
// Remove local value instructions starting from the instruction after
// SavedLastLocalValue to the current function insert point.
void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
{
MachineInstr *CurLastLocalValue = getLastLocalValue();
if (CurLastLocalValue != SavedLastLocalValue) {
// Find the first local value instruction to be deleted.
// This is the instruction after SavedLastLocalValue if it is non-NULL.
// Otherwise it's the first instruction in the block.
MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
if (SavedLastLocalValue)
++FirstDeadInst;
else
FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
setLastLocalValue(SavedLastLocalValue);
removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
}
}
bool FastISel::selectInstruction(const Instruction *I) {
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
// Flush the local value map before starting each instruction.
// This improves locality and debugging, and can reduce spills.
// Reuse of values across IR instructions is relatively uncommon.
flushLocalValueMap();
MachineInstr *SavedLastLocalValue = getLastLocalValue();
// Just before the terminator instruction, insert instructions to
// feed PHI nodes in successor blocks.
if (I->isTerminator()) {
if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
// PHI node handling may have generated local value instructions,
// even though it failed to handle all PHI nodes.
// We remove these instructions because SelectionDAGISel will generate
// them again.
removeDeadLocalValueCode(SavedLastLocalValue);
return false;
}
Swift Calling Convention: swifterror target-independent change. At IR level, the swifterror argument is an input argument with type ErrorObject**. For targets that support swifterror, we want to optimize it to behave as an inout value with type ErrorObject*; it will be passed in a fixed physical register. The main idea is to track the virtual registers for each swifterror value. We define swifterror values as AllocaInsts with swifterror attribute or a function argument with swifterror attribute. In SelectionDAGISel.cpp, we set up swifterror values (SwiftErrorVals) before handling the basic blocks. When iterating over all basic blocks in RPO, before actually visiting the basic block, we call mergeIncomingSwiftErrors to merge incoming swifterror values when there are multiple predecessors or to simply propagate them. There, we create a virtual register for each swifterror value in the entry block. For predecessors that are not yet visited, we create virtual registers to hold the swifterror values at the end of the predecessor. The assignments are saved in SwiftErrorWorklist and will be materialized at the end of visiting the basic block. When visiting a load from a swifterror value, we copy from the current virtual register assignment. When visiting a store to a swifterror value, we create a virtual register to hold the swifterror value and update SwiftErrorMap to track the current virtual register assignment. Differential Revision: http://reviews.llvm.org/D18108 llvm-svn: 265433
2016-04-05 20:13:16 +02:00
}
// FastISel does not handle any operand bundles except OB_funclet.
if (auto *Call = dyn_cast<CallBase>(I))
for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
return false;
DbgLoc = I->getDebugLoc();
SavedInsertPt = FuncInfo.InsertPt;
if (const auto *Call = dyn_cast<CallInst>(I)) {
const Function *F = Call->getCalledFunction();
LibFunc Func;
// As a special case, don't handle calls to builtin library functions that
// may be translated directly to target instructions.
if (F && !F->hasLocalLinkage() && F->hasName() &&
LibInfo->getLibFunc(F->getName(), Func) &&
LibInfo->hasOptimizedCodeGen(Func))
return false;
// Don't handle Intrinsic::trap if a trap function is specified.
if (F && F->getIntrinsicID() == Intrinsic::trap &&
Call->hasFnAttr("trap-func-name"))
return false;
}
// First, try doing target-independent selection.
if (!SkipTargetIndependentISel) {
if (selectOperator(I, I->getOpcode())) {
++NumFastIselSuccessIndependent;
DbgLoc = DebugLoc();
return true;
}
// Remove dead code.
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
SavedInsertPt = FuncInfo.InsertPt;
}
// Next, try calling the target to attempt to handle the instruction.
if (fastSelectInstruction(I)) {
++NumFastIselSuccessTarget;
DbgLoc = DebugLoc();
return true;
}
// Remove dead code.
recomputeInsertPt();
if (SavedInsertPt != FuncInfo.InsertPt)
removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
DbgLoc = DebugLoc();
// Undo phi node updates, because they will be added again by SelectionDAG.
if (I->isTerminator()) {
// PHI node handling may have generated local value instructions.
// We remove them because SelectionDAGISel will generate them again.
removeDeadLocalValueCode(SavedLastLocalValue);
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
}
return false;
}
/// Emit an unconditional branch to the given block, unless it is the immediate
/// (fall-through) successor, and update the CFG.
void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
const DebugLoc &DbgLoc) {
if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
// For more accurate line information if this is the only non-debug
// instruction in the block then emit it, otherwise we have the
// unconditional fall-through case, which needs no instructions.
} else {
// The unconditional branch case.
TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
SmallVector<MachineOperand, 0>(), DbgLoc);
}
if (FuncInfo.BPI) {
auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
} else
FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
}
void FastISel::finishCondBranch(const BasicBlock *BranchBB,
MachineBasicBlock *TrueMBB,
MachineBasicBlock *FalseMBB) {
// Add TrueMBB as successor unless it is equal to the FalseMBB: This can
// happen in degenerate IR and MachineIR forbids to have a block twice in the
// successor/predecessor lists.
if (TrueMBB != FalseMBB) {
if (FuncInfo.BPI) {
auto BranchProbability =
FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
} else
FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
}
fastEmitBranch(FalseMBB, DbgLoc);
}
/// Emit an FNeg operation.
bool FastISel::selectFNeg(const User *I, const Value *In) {
Register OpReg = getRegForValue(In);
if (!OpReg)
return false;
// If the target has ISD::FNEG, use it.
EVT VT = TLI.getValueType(DL, I->getType());
Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
OpReg);
if (ResultReg) {
updateValueMap(I, ResultReg);
return true;
}
// Bitcast the value to integer, twiddle the sign bit with xor,
// and then bitcast it back to floating-point.
if (VT.getSizeInBits() > 64)
return false;
EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
if (!TLI.isTypeLegal(IntVT))
return false;
Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
ISD::BITCAST, OpReg);
if (!IntReg)
return false;
Register IntResultReg = fastEmit_ri_(
IntVT.getSimpleVT(), ISD::XOR, IntReg,
UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
if (!IntResultReg)
return false;
ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
IntResultReg);
if (!ResultReg)
return false;
updateValueMap(I, ResultReg);
return true;
}
bool FastISel::selectExtractValue(const User *U) {
const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
2011-05-16 22:34:53 +02:00
if (!EVI)
return false;
// Make sure we only try to handle extracts with a legal result. But also
// allow i1 because it's easy.
EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
if (!RealVT.isSimple())
return false;
MVT VT = RealVT.getSimpleVT();
if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
return false;
const Value *Op0 = EVI->getOperand(0);
Type *AggTy = Op0->getType();
// Get the base result register.
unsigned ResultReg;
2020-04-08 18:26:32 +02:00
DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
if (I != FuncInfo.ValueMap.end())
ResultReg = I->second;
else if (isa<Instruction>(Op0))
ResultReg = FuncInfo.InitializeRegForValue(Op0);
else
return false; // fast-isel can't handle aggregate constants at the moment
// Get the actual result register, which is an offset from the base register.
unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
SmallVector<EVT, 4> AggValueVTs;
ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
for (unsigned i = 0; i < VTIndex; i++)
ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
updateValueMap(EVI, ResultReg);
return true;
}
bool FastISel::selectOperator(const User *I, unsigned Opcode) {
switch (Opcode) {
case Instruction::Add:
return selectBinaryOp(I, ISD::ADD);
case Instruction::FAdd:
return selectBinaryOp(I, ISD::FADD);
case Instruction::Sub:
return selectBinaryOp(I, ISD::SUB);
case Instruction::FSub:
return selectBinaryOp(I, ISD::FSUB);
case Instruction::Mul:
return selectBinaryOp(I, ISD::MUL);
case Instruction::FMul:
return selectBinaryOp(I, ISD::FMUL);
case Instruction::SDiv:
return selectBinaryOp(I, ISD::SDIV);
case Instruction::UDiv:
return selectBinaryOp(I, ISD::UDIV);
case Instruction::FDiv:
return selectBinaryOp(I, ISD::FDIV);
case Instruction::SRem:
return selectBinaryOp(I, ISD::SREM);
case Instruction::URem:
return selectBinaryOp(I, ISD::UREM);
case Instruction::FRem:
return selectBinaryOp(I, ISD::FREM);
case Instruction::Shl:
return selectBinaryOp(I, ISD::SHL);
case Instruction::LShr:
return selectBinaryOp(I, ISD::SRL);
case Instruction::AShr:
return selectBinaryOp(I, ISD::SRA);
case Instruction::And:
return selectBinaryOp(I, ISD::AND);
case Instruction::Or:
return selectBinaryOp(I, ISD::OR);
case Instruction::Xor:
return selectBinaryOp(I, ISD::XOR);
case Instruction::FNeg:
return selectFNeg(I, I->getOperand(0));
case Instruction::GetElementPtr:
return selectGetElementPtr(I);
case Instruction::Br: {
const BranchInst *BI = cast<BranchInst>(I);
if (BI->isUnconditional()) {
const BasicBlock *LLVMSucc = BI->getSuccessor(0);
MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
fastEmitBranch(MSucc, BI->getDebugLoc());
return true;
}
// Conditional branches are not handed yet.
// Halt "fast" selection and bail.
return false;
}
case Instruction::Unreachable:
if (TM.Options.TrapUnreachable)
return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
else
return true;
case Instruction::Alloca:
// FunctionLowering has the static-sized case covered.
if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
return true;
// Dynamic-sized alloca is not handled yet.
return false;
case Instruction::Call:
// On AIX, call lowering uses the DAG-ISEL path currently so that the
// callee of the direct function call instruction will be mapped to the
// symbol for the function's entry point, which is distinct from the
// function descriptor symbol. The latter is the symbol whose XCOFF symbol
// name is the C-linkage name of the source level function.
if (TM.getTargetTriple().isOSAIX())
return false;
return selectCall(I);
case Instruction::BitCast:
return selectBitCast(I);
case Instruction::FPToSI:
return selectCast(I, ISD::FP_TO_SINT);
case Instruction::ZExt:
return selectCast(I, ISD::ZERO_EXTEND);
case Instruction::SExt:
return selectCast(I, ISD::SIGN_EXTEND);
case Instruction::Trunc:
return selectCast(I, ISD::TRUNCATE);
case Instruction::SIToFP:
return selectCast(I, ISD::SINT_TO_FP);
case Instruction::IntToPtr: // Deliberate fall-through.
case Instruction::PtrToInt: {
EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(DL, I->getType());
if (DstVT.bitsGT(SrcVT))
return selectCast(I, ISD::ZERO_EXTEND);
if (DstVT.bitsLT(SrcVT))
return selectCast(I, ISD::TRUNCATE);
2020-05-28 23:54:49 +02:00
Register Reg = getRegForValue(I->getOperand(0));
if (!Reg)
return false;
updateValueMap(I, Reg);
return true;
}
case Instruction::ExtractValue:
return selectExtractValue(I);
case Instruction::Freeze:
return selectFreeze(I);
case Instruction::PHI:
llvm_unreachable("FastISel shouldn't visit PHI nodes!");
default:
// Unhandled instruction. Halt "fast" selection and bail.
return false;
}
}
FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo,
bool SkipTargetIndependentISel)
: FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
TII(*MF->getSubtarget().getInstrInfo()),
TLI(*MF->getSubtarget().getTargetLowering()),
TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
SkipTargetIndependentISel(SkipTargetIndependentISel),
LastLocalValue(nullptr), EmitStartPt(nullptr) {}
FastISel::~FastISel() = default;
bool FastISel::fastLowerArguments() { return false; }
bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
return false;
}
unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
return 0;
}
unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
unsigned /*Op1*/) {
return 0;
}
unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
return 0;
}
unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
const ConstantFP * /*FPImm*/) {
return 0;
}
unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
uint64_t /*Imm*/) {
return 0;
}
/// This method is a wrapper of fastEmit_ri. It first tries to emit an
/// instruction with an immediate operand using fastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// fastEmit_rr instead.
Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
uint64_t Imm, MVT ImmType) {
// If this is a multiply by a power of two, emit this as a shift left.
if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
Opcode = ISD::SHL;
Imm = Log2_64(Imm);
} else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
// div x, 8 -> srl x, 3
Opcode = ISD::SRL;
Imm = Log2_64(Imm);
}
// Horrible hack (to be removed), check to make sure shift amounts are
// in-range.
if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
Imm >= VT.getSizeInBits())
return 0;
// First check if immediate type is legal. If not, we can't use the ri form.
Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
if (ResultReg)
return ResultReg;
Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
if (!MaterialReg) {
// This is a bit ugly/slow, but failing here means falling out of
// fast-isel, which would be very slow.
IntegerType *ITy =
IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
if (!MaterialReg)
return 0;
}
return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
}
Register FastISel::createResultReg(const TargetRegisterClass *RC) {
return MRI.createVirtualRegister(RC);
}
Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
unsigned OpNum) {
if (Op.isVirtual()) {
const TargetRegisterClass *RegClass =
TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
if (!MRI.constrainRegClass(Op, RegClass)) {
// If it's not legal to COPY between the register classes, something
// has gone very wrong before we got here.
2020-05-28 23:54:49 +02:00
Register NewOp = createResultReg(RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
return NewOp;
}
}
return Op;
}
Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
const TargetRegisterClass *RC) {
Register ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
return ResultReg;
}
Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
unsigned Op1) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0)
.addReg(Op1);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0)
.addReg(Op1);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
unsigned Op1, unsigned Op2) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0)
.addReg(Op1)
.addReg(Op2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0)
.addReg(Op1)
.addReg(Op2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
uint64_t Imm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0)
.addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0)
.addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
uint64_t Imm1, uint64_t Imm2) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0)
.addImm(Imm1)
.addImm(Imm2);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0)
.addImm(Imm1)
.addImm(Imm2);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
const TargetRegisterClass *RC,
const ConstantFP *FPImm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addFPImm(FPImm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addFPImm(FPImm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, unsigned Op0,
unsigned Op1, uint64_t Imm) {
const MCInstrDesc &II = TII.get(MachineInstOpcode);
Register ResultReg = createResultReg(RC);
Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addReg(Op0)
.addReg(Op1)
.addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
.addReg(Op0)
.addReg(Op1)
.addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
}
Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
const TargetRegisterClass *RC, uint64_t Imm) {
Register ResultReg = createResultReg(RC);
const MCInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
.addImm(Imm);
else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
}
return ResultReg;
2008-08-26 00:20:39 +02:00
}
Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
uint32_t Idx) {
Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(Register::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs");
const TargetRegisterClass *RC = MRI.getRegClass(Op0);
MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
ResultReg).addReg(Op0, 0, Idx);
return ResultReg;
}
/// Emit MachineInstrs to compute the value of Op with all but the least
/// significant bit set to zero.
Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
}
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input. We cannot just directly add them, because expansion
/// might result in multiple MBB's for one BB. As such, the start of the
/// BB might correspond to a different MBB than the end.
bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
const Instruction *TI = LLVMBB->getTerminator();
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
// Check successor nodes' PHI nodes that expect a constant to be available
// from this block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
const BasicBlock *SuccBB = TI->getSuccessor(succ);
if (!isa<PHINode>(SuccBB->begin()))
continue;
MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
// If this terminator has multiple identical successors (common for
// switches), only handle each succ once.
if (!SuccsHandled.insert(SuccMBB).second)
continue;
MachineBasicBlock::iterator MBBI = SuccMBB->begin();
// At this point we know that there is a 1-1 correspondence between LLVM PHI
// nodes and Machine PHI nodes, but the incoming operands have not been
// emitted yet.
for (const PHINode &PN : SuccBB->phis()) {
// Ignore dead phi's.
if (PN.use_empty())
continue;
// Only handle legal types. Two interesting things to note here. First,
// by bailing out early, we may leave behind some dead instructions,
// since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
// own moves. Second, this check is necessary because FastISel doesn't
// use CreateRegs to create registers, so it always creates
// exactly one register for each non-void instruction.
EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
// Handle integer promotions, though, because they're common and easy.
if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
return false;
}
}
const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
[FastISel] Flush local value map on every instruction Local values are constants or addresses that can't be folded into the instruction that uses them. FastISel materializes these in a "local value" area that always dominates the current insertion point, to try to avoid materializing these values more than once (per block). https://reviews.llvm.org/D43093 added code to sink these local value instructions to their first use, which has two beneficial effects. One, it is likely to avoid some unnecessary spills and reloads; two, it allows us to attach the debug location of the user to the local value instruction. The latter effect can improve the debugging experience for debuggers with a "set next statement" feature, such as the Visual Studio debugger and PS4 debugger, because instructions to set up constants for a given statement will be associated with the appropriate source line. There are also some constants (primarily addresses) that could be produced by no-op casts or GEP instructions; the main difference from "local value" instructions is that these are values from separate IR instructions, and therefore could have multiple users across multiple basic blocks. D43093 avoided sinking these, even though they were emitted to the same "local value" area as the other instructions. The patch comment for D43093 states: Local values may also be used by no-op casts, which adds the register to the RegFixups table. Without reversing the RegFixups map direction, we don't have enough information to sink these instructions. This patch undoes most of D43093, and instead flushes the local value map after(*) every IR instruction, using that instruction's debug location. This avoids sometimes incorrect locations used previously, and emits instructions in a more natural order. In addition, constants materialized due to PHI instructions are not assigned a debug location immediately; instead, when the local value map is flushed, if the first local value instruction has no debug location, it is given the same location as the first non-local-value-map instruction. This prevents PHIs from introducing unattributed instructions, which would either be implicitly attributed to the location for the preceding IR instruction, or given line 0 if they are at the beginning of a machine basic block. Neither of those consequences is good for debugging. This does mean materialized values are not re-used across IR instruction boundaries; however, only about 5% of those values were reused in an experimental self-build of clang. (*) Actually, just prior to the next instruction. It seems like it would be cleaner the other way, but I was having trouble getting that to work. This reapplies commits cf1c774d and dc35368c, and adds the modification to PHI handling, which should avoid problems with debugging under gdb. Differential Revision: https://reviews.llvm.org/D91734
2021-01-11 17:32:36 +01:00
// Set the DebugLoc for the copy. Use the location of the operand if
// there is one; otherwise no location, flushLocalValueMap will fix it.
DbgLoc = DebugLoc();
if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
DbgLoc = Inst->getDebugLoc();
Register Reg = getRegForValue(PHIOp);
if (!Reg) {
FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
return false;
}
FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
DbgLoc = DebugLoc();
}
}
return true;
}
bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
assert(LI->hasOneUse() &&
"tryToFoldLoad expected a LoadInst with a single use");
// We know that the load has a single use, but don't know what it is. If it
// isn't one of the folded instructions, then we can't succeed here. Handle
// this by scanning the single-use users of the load until we get to FoldInst.
unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 04:16:01 +01:00
const Instruction *TheUser = LI->user_back();
while (TheUser != FoldInst && // Scan up until we find FoldInst.
// Stay in the right block.
TheUser->getParent() == FoldInst->getParent() &&
--MaxUsers) { // Don't scan too far.
// If there are multiple or no uses of this instruction, then bail out.
if (!TheUser->hasOneUse())
return false;
[C++11] Add range based accessors for the Use-Def chain of a Value. This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] llvm-svn: 203364
2014-03-09 04:16:01 +01:00
TheUser = TheUser->user_back();
}
// If we didn't find the fold instruction, then we failed to collapse the
// sequence.
if (TheUser != FoldInst)
return false;
// Don't try to fold volatile loads. Target has to deal with alignment
// constraints.
if (LI->isVolatile())
return false;
// Figure out which vreg this is going into. If there is no assigned vreg yet
// then there actually was no reference to it. Perhaps the load is referenced
// by a dead instruction.
Register LoadReg = getRegForValue(LI);
if (!LoadReg)
return false;
// We can't fold if this vreg has no uses or more than one use. Multiple uses
// may mean that the instruction got lowered to multiple MIs, or the use of
// the loaded value ended up being multiple operands of the result.
if (!MRI.hasOneUse(LoadReg))
return false;
MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
MachineInstr *User = RI->getParent();
// Set the insertion point properly. Folding the load can cause generation of
// other random instructions (like sign extends) for addressing modes; make
// sure they get inserted in a logical place before the new instruction.
FuncInfo.InsertPt = User;
FuncInfo.MBB = User->getParent();
// Ask the target to try folding the load.
return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
}
bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
// Must be an add.
if (!isa<AddOperator>(Add))
return false;
// Type size needs to match.
if (DL.getTypeSizeInBits(GEP->getType()) !=
DL.getTypeSizeInBits(Add->getType()))
return false;
// Must be in the same basic block.
if (isa<Instruction>(Add) &&
FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
return false;
// Must have a constant operand.
return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
}
MachineMemOperand *
FastISel::createMachineMemOperandFor(const Instruction *I) const {
const Value *Ptr;
Type *ValTy;
MaybeAlign Alignment;
MachineMemOperand::Flags Flags;
bool IsVolatile;
if (const auto *LI = dyn_cast<LoadInst>(I)) {
Alignment = LI->getAlign();
IsVolatile = LI->isVolatile();
Flags = MachineMemOperand::MOLoad;
Ptr = LI->getPointerOperand();
ValTy = LI->getType();
} else if (const auto *SI = dyn_cast<StoreInst>(I)) {
Alignment = SI->getAlign();
IsVolatile = SI->isVolatile();
Flags = MachineMemOperand::MOStore;
Ptr = SI->getPointerOperand();
ValTy = SI->getValueOperand()->getType();
} else
return nullptr;
bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
AAMDNodes AAInfo;
I->getAAMetadata(AAInfo);
if (!Alignment) // Ensure that codegen never sees alignment 0.
Alignment = DL.getABITypeAlign(ValTy);
unsigned Size = DL.getTypeStoreSize(ValTy);
if (IsVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (IsNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (IsDereferenceable)
Flags |= MachineMemOperand::MODereferenceable;
if (IsInvariant)
Flags |= MachineMemOperand::MOInvariant;
return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
*Alignment, AAInfo, Ranges);
}
CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
// If both operands are the same, then try to optimize or fold the cmp.
CmpInst::Predicate Predicate = CI->getPredicate();
if (CI->getOperand(0) != CI->getOperand(1))
return Predicate;
switch (Predicate) {
default: llvm_unreachable("Invalid predicate!");
case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
}
return Predicate;
Move the complex address expression out of DIVariable and into an extra argument of the llvm.dbg.declare/llvm.dbg.value intrinsics. Previously, DIVariable was a variable-length field that has an optional reference to a Metadata array consisting of a variable number of complex address expressions. In the case of OpPiece expressions this is wasting a lot of storage in IR, because when an aggregate type is, e.g., SROA'd into all of its n individual members, the IR will contain n copies of the DIVariable, all alike, only differing in the complex address reference at the end. By making the complex address into an extra argument of the dbg.value/dbg.declare intrinsics, all of the pieces can reference the same variable and the complex address expressions can be uniqued across the CU, too. Down the road, this will allow us to move other flags, such as "indirection" out of the DIVariable, too. The new intrinsics look like this: declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr) declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr) This patch adds a new LLVM-local tag to DIExpressions, so we can detect and pretty-print DIExpression metadata nodes. What this patch doesn't do: This patch does not touch the "Indirect" field in DIVariable; but moving that into the expression would be a natural next step. http://reviews.llvm.org/D4919 rdar://problem/17994491 Thanks to dblaikie and dexonsmith for reviewing this patch! Note: I accidentally committed a bogus older version of this patch previously. llvm-svn: 218787
2014-10-01 20:55:02 +02:00
}