Support VM and VMP registers in copyPhysReg() function. Also add
regression tests.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D93547
We need to make sure not to emit R_X86_64_GOTPCRELX relocations for
instructions that use a REX prefix. If a REX prefix is present, we need to
instead use a R_X86_64_REX_GOTPCRELX relocation. The existing logic for
CALL64m, JMP64m, etc. already handles this by checking the HasREX parameter
and using it to determine which relocation type to use. Do this for all
instructions that can use relaxed relocations.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93561
To support OpenCL, which typically uses SPIR as an IR, non-zero address
spaces must be accounted for. This patch makes the RISC-V target assume
no-op address space casts across the board, which effectively removes
the need to support addrspacecast instructions in the backend.
For a RISC-V implementation with different configurations or specialized
address spaces where casts aren't no-ops, the function can be adjusted
as required.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D93536
This patch adds two IR intrinsics for vsetvli instruction. One to set the vector length to a user specified value and one to set it to vlmax. The vlmax uses the X0 source register encoding.
Clang builtins will follow in a separate patch
Differential Revision: https://reviews.llvm.org/D92973
993eaf2d69d8beb97e4695cbd919b927ed1cfe86 (D90844) is still wrong.
The allocated const Record* pointers do not have an order guarantee
so switching from DenseMap to std::map does not help.
ProcModelMapTy = std::map<const Record*, unsigned>
Sort the values instead.
The default behavior for any_extend of a constant is to zero extend.
This occurs inside of getNode rather than allowing type legalization
to promote the constant which would sign extend. By using sign extend
with getNode the constant will be sign extended. This gives a better
chance for isel to find a simm5 immediate since all xlen bits are
examined there.
For instructions that use a uimm5 immediate, this change only affects
constants >= 128 for i8 or >= 32768 for i16. Constants that large
already wouldn't have been eligible for uimm5 and would need to use a
scalar register.
If the instruction isn't able to use simm5 or the immediate is
too large, we'll need to materialize the immediate in a register.
As far as I know constants with all 1s in the upper bits should
materialize as well or better than all 0s.
Longer term we should probably have a SEW aware PatFrag to ignore
the bits above SEW before checking simm5.
I updated about half the test cases in some tests to use a negative
constant to get coverage for this.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D93487
MSSA DSE starts at a killing store, finds an earlier store and
then checks that the earlier store is not read along any paths
(without being killed first). However, it uses the memory location
of the killing store for that, not the earlier store that we're
attempting to eliminate.
This has a number of problems:
* Mismatches between what BasicAA considers aliasing and what DSE
considers an overwrite (even though both are correct in isolation)
can result in miscompiles. This is PR48279, which D92045 tries to
fix in a different way. The problem is that we're using a location
from a store that is potentially not executed and thus may be UB,
in which case analysis results can be arbitrary.
* Metadata on the killing store may be used to determine aliasing,
but there is no guarantee that the metadata is valid, as the specific
killing store may not be executed. Using the metadata on the earlier
store is valid (it is the store we're removing, so on any execution
where its removal may be observed, it must be executed).
* The location is imprecise. For full overwrites the killing store
will always have a location that is larger or equal than the earlier
access location, so it's beneficial to use the earlier access
location. This is not the case for partial overwrites, in which
case either location might be smaller. There is some room for
improvement here.
Using the earlier access location means that we can no longer cache
which accesses are read for a given killing store, as we may be
querying different locations. However, it turns out that simply
dropping the cache has no notable impact on compile-time.
Differential Revision: https://reviews.llvm.org/D93523
This time with tests.
Original message:
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
Similar to D93365, but for floating point. No need for special ISD opcodes
though. We can directly isel these from intrinsics. I had to use anyfloat_ty
instead of anyvector_ty in the intrinsics to make LLVMVectorElementType not
crash when imported into the -gen-dag-isel tablegen backend.
Differential Revision: https://reviews.llvm.org/D93426
This adds intrinsics for vmv.x.s and vmv.s.x.
I've used stricter type constraints on these intrinsics than what we've been doing on the arithmetic intrinsics so far. This will allow us to not need to pass the scalar type to the Intrinsic::getDeclaration call when creating these intrinsics.
A custom ISD is used for vmv.x.s in order to implement the change in computeNumSignBitsForTargetNode which can remove sign extends on the result.
I also modified the MC layer description of these instructions to show the tied source/dest operand. This is different than what we do for masked instructions where we drop the tied source operand when converting to MC. But it is a more accurate description of the instruction. We can't do this for masked instructions since we use the same MC instruction for masked and unmasked. Tools like llvm-mca operate in the MC layer and rely on ins/outs and Uses/Defs for analysis so I don't know if we'll be able to maintain the current behavior for masked instructions. So I went with the accurate description here since it was easy.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D93365
The function was introduced on Aug 25, 2016 in commit
5f0d0e60d11b8d2e48aacf31a82762280f9a8712.
Its last use was removed on Sep 13, 2017 in commit
dfa8741c9693c344477c842a25ee0cb6a6f59fcd.
This patch enables canonicalization of SPF_ABS and SPF_ABS
to the abs intrinsic.
This is a recommit, the original try was
05d4c4ebc2fb006b8a2bd05b24c6aba10dd2eef8,
but it was reverted due to an apparent miscompile,
which since then has just been fixed by the previous commit.
Differential Revision: https://reviews.llvm.org/D87188
The transform wasn't checking that the LHS of the comparison
*is* the `X` in question...
This is the miscompile that was holding up D87188.
Thanks to Dave Green for producing an actionable reproducer!
The main change is to add a 'IsDecl' field to DIModule so
that when IsDecl is set to true, the debug info entry generated
for the module would be marked as a declaration. That way, the debugger
would look up the definition of the module in the gloabl scope.
Please see the comments in llvm/test/DebugInfo/X86/dimodule.ll
for what the debug info entries would look like.
Differential Revision: https://reviews.llvm.org/D93462
Temporarily revert commit 8b1c4e310c2f9686cad925ad81d8e2be10a1ef3c.
After 8b1c4e310c2f the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.
I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
We work with @rogfer01 from BSC to come out this patch.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Craig Topper <craig.topper@sifive.com>
Differential Revision: https://reviews.llvm.org/D93514
Similar to D69312, and documented in D69839, the IRBuilder needs to add
the strictfp attribute to invoke instructions when constrained floating
point is enabled.
This is try 2, with the test corrected.
Differential Revision: https://reviews.llvm.org/D93134
This PR implements the function splitBasicBlockBefore to address an
issue
that occurred during SplitEdge(BB, Succ, ...), inside splitBlockBefore.
The issue occurs in SplitEdge when the Succ has a single predecessor
and the edge between the BB and Succ is not critical. This produces
the result ‘BB->Succ->New’. The new function splitBasicBlockBefore
was added to splitBlockBefore to handle the issue and now produces
the correct result ‘BB->New->Succ’.
Below is an example of splitting the block bb1 at its first instruction.
/// Original IR
bb0:
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlock
bb0:
br bb1
bb1:
br bb1.split
bb1.split:
%0 = mul i32 1, 2
br bb2
bb2:
/// IR after splitEdge(bb0, bb1) using splitBasicBlockBefore
bb0:
br bb1.split
bb1.split
br bb1
bb1:
%0 = mul i32 1, 2
br bb2
bb2:
Differential Revision: https://reviews.llvm.org/D92200
According to the documentation, if a spill is required to make a
register available and AllowSpill is false, then NoRegister should be
returned, however, this scenario was actually triggering an assertion
failure.
This patch moves the assertion after the handling of AllowSpill.
Authored by: Lewis Revill
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92104
The SROA pass tries to be lazy for removing dead instructions that are collected during iterative run of the pass in the DeadInsts list. However it does not remove instructions from the dead list while running eraseFromParent() on those instructions.
This causes (rare) null pointer dereferences. For example, in the speculatePHINodeLoads() instruction, in the following code snippet:
```
while (!PN.use_empty()) {
LoadInst *LI = cast<LoadInst>(PN.user_back());
LI->replaceAllUsesWith(NewPN);
LI->eraseFromParent();
}
```
If the Load instruction LI belongs to the DeadInsts list, it should be removed when eraseFromParent() is called. However, the bug does not show up in most cases, because immediately in the same function, a new LoadInst is created in the following line:
```
LoadInst *Load = PredBuilder.CreateAlignedLoad(
LoadTy, InVal, Alignment,
(PN.getName() + ".sroa.speculate.load." + Pred->getName()));
```
This new LoadInst object takes the same memory address of the just deleted LI using eraseFromParent(), therefore the bug does not materialize. In very rare cases, the addresses differ and therefore, a dangling pointer is created, causing a crash.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D92431
MVE has a dual lane vector move instruction, capable of moving two
general purpose registers into lanes of a vector register. They look
like one of:
vmov q0[2], q0[0], r2, r0
vmov q0[3], q0[1], r3, r1
They only accept these lane indices though (and only insert into an
i32), either moving lanes 1 and 3, or 0 and 2.
This patch adds some tablegen patterns for them, selecting from vector
inserts elements. Because the insert_elements are know to be
canonicalized to ascending order there are several patterns that we need
to select. These lane indices are:
3 2 1 0 -> vmovqrr 31; vmovqrr 20
3 2 1 -> vmovqrr 31; vmov 2
3 1 -> vmovqrr 31
2 1 0 -> vmovqrr 20; vmov 1
2 0 -> vmovqrr 20
With the top one being the most common. All other potential patterns of
lane indices will be matched by a combination of these and the
individual vmov pattern already present. This does mean that we are
selecting several machine instructions at once due to the need to
re-arrange the inserts, but in this case there is nothing else that will
attempt to match an insert_vector_elt node.
This is a recommit of 6cc3d80a84884a79967fffa4596c14001b8ba8a3 after
fixing the backward instruction definitions.
Following up with the comments in D92706.
- Use -passes instead of -enable-new-pm
- CoroEarly should happen before AlwaysInliner, adjust it.
- Remove some unnecessary barriers (still kept one)
- Cleanup unnecessary debug info
Differential Revision: https://reviews.llvm.org/D93342
This only needs to be called once for the function, and it visits all
the necessary blocks in the function. It looks like
631f6b888c50276450fee8b9ef129f37f83fc5a1 accidentally moved this into
the loop over all save blocks.
This updates the test for the `.arch_extension` as directive negatives
to properly enable the extensions being tested on the llvm-mc command
line before validating that the directive correctly disables them.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D93538
This adds support for the 'ls64' AArch64 extension to the `.arch_extension`
asm directive.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D92574
Followup to D92645 - remove the remaining places where we create X86ISD::SUBV_BROADCAST, and fold splatted vector loads to X86ISD::SUBV_BROADCAST_LOAD instead.
Remove all the X86SubVBroadcast isel patterns, including all the fallbacks for if memory folding failed.
This is an enhancement motivated by https://llvm.org/PR16739
(see D92858 for another).
We can look through a GEP to find a base pointer that may be
safe to use for a vector load. If so, then we shuffle (shift)
the necessary vector element over to index 0.
Alive2 proof based on 1 of the regression tests:
https://alive2.llvm.org/ce/z/yPJLkh
The vector translation is independent of endian (verify by
changing to leading 'E' in the datalayout string).
Differential Revision: https://reviews.llvm.org/D93229
Currently, `ELFFile<ELFT>::getEntry` does not check an index of
an entry. Because of that the code might read past the end of the symbol
table silently. I've added a test to `llvm-readobj\ELF\relocations.test`
to demonstrate the possible issue. Also, I've added a unit test for
this method.
After this change, `getEntry` stops reporting the section index and
reuses the `getSectionContentsAsArray` method, which already has
all the validation needed. Our related warnings now provide
more and better context sometimes.
Differential revision: https://reviews.llvm.org/D93209
Redundant Copy Elimination was eliminating a MOVi32imm -1 when it
determined that the value of the destination register is already -1.
However, it didn't take into account that the MOVi32imm zeroes the upper
32 bits (which are FFFFFFFF) and therefore cannot be eliminated.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D93100
During isel there's no need to protect illegal types. Patch also
adds a missing unit test for tbl2 intrinsic using bfloat types.
Differential Revision: https://reviews.llvm.org/D93404
This patch extends LowerMGATHER/MSCATTER to make use of the vector + reg/immediate
addressing modes for scalable masked gathers & scatters.
selectGatherScatterAddrMode checks if the base pointer is null, in which case
we can swap the base pointer and the index, e.g.
getelementptr nullptr, <vscale x N x T> (splat(%offset)) + %indices)
-> getelementptr %offset, <vscale x N x T> %indices
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D93132
This is an addition to the existing Statistical Profiling extension, which
introduces an extra system register that is enabled by the new 'spe-eef'
subtarget feature.
Patch written by Simon Tatham.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D92391
This introduces asm support for the Branch Record Buffer extension, through
the new 'brbe' subtarget feature. It consists of a new set of system registers
that enable the handling of branch records.
Patch written by Simon Tatham.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D92389
This is split off from D91718 and adds a new target hook
supportsScalableVectors that can be queried to check if scalable vectors
are supported by the backend. For AArch64 this returns true if SVE is
enabled.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D93060
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ
The intrinsics have overloaded source and result type and support
vector operands:
i32 @llvm.fptoui.sat.i32.f32(float %f)
i100 @llvm.fptoui.sat.i100.f64(double %f)
<4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
// etc
On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:
i19 @llvm.fptsi.sat.i19.f32(float %f)
// builds
i19 fp_to_sint_sat f, 19
// type legalizes (through integer result promotion)
i32 fp_to_sint_sat f, 19
I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.
There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:
f = fmaxnum f, FP(MIN)
f = fminnum f, FP(MAX)
i = fptoxi f
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
If the bounds cannot be exactly represented, we expand to something
like this instead:
i = fptoxi f
i = select f ult FP(MIN), MIN, i
i = select f ogt FP(MAX), MAX, i
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
It should be noted that this expansion assumes a non-trapping fptoxi.
Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.
Original patch by @nikic and @ebevhan (based on D54696).
Differential Revision: https://reviews.llvm.org/D54749