I'm choosing PPC out of convenience because it does
all of the transforms of interest in these tests by
default. There are multiple FMF problems shown in the
current checks. D45710 is proposing to fix part of
that.
llvm-svn: 331471
Summary:
This reverts SVN r331441 (reapplies r331337), together with a fix
in to handle an already existing fragment expression in the
dbg.value that must be fragmented due to a split PHI node.
This should solve the problem seen in PR37321, which was the
reason for the revert of r331337.
The situation in PR37321 is that we have a PHI node like this
%u.sroa = phi i80 [ %u.sroa.x, %if.x ],
[ %u.sroa.y, %if.y ],
[ %u.sroa.z, %if.z ]
and a dbg.value like this
call void @llvm.dbg.value(metadata i80 %u.sroa,
metadata !13,
metadata !DIExpression(DW_OP_LLVM_fragment, 0, 80))
The phi node is split into three 32-bit PHI nodes
%30:gr32 = PHI %11:gr32, %bb.4, %14:gr32, %bb.5, %27:gr32, %bb.8
%31:gr32 = PHI %12:gr32, %bb.4, %15:gr32, %bb.5, %28:gr32, %bb.8
%32:gr32 = PHI %13:gr32, %bb.4, %16:gr32, %bb.5, %29:gr32, %bb.8
but since the original value only is 80 bits we need to adjust the size
of the last fragment expression, and with this patch we get
DBG_VALUE debug-use %30:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 0, 32)
DBG_VALUE debug-use %31:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 32, 32)
DBG_VALUE debug-use %32:gr32, debug-use $noreg, !"u", !DIExpression(DW_OP_LLVM_fragment, 64, 16)
Reviewers: vsk, aprantl, mstorsjo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46384
llvm-svn: 331464
These tests are for DAGCombiner::foldSelectCCToShiftAnd().
Right now, they were only tested for AArch64,
but given the upcoming X86 changes to the hasAndNot(),
the test coverage needs to be added.
These tests originated from D27489 / rL289738
llvm-svn: 331454
By default LLVM thinks very large vectors get aligned to their size when
passed across functions. Unfortunately no-one told the ARM backend so it
doesn't trigger stack realignment and so accesses can cause the usual
misalignment issues (e.g. a data abort).
This changes the ABI alignment to the stack alignment, which in practice
(and as a bonus) also coincides with the alignment "natural" vectors get.
llvm-svn: 331451
Also retagged VDBPSADBW instructions as SchedWritePSADBW instead of SchedWriteVecIMul which matches the behaviour on SkylakeServer (the only thing that supports it...)
llvm-svn: 331445
The code fails to check that the same value is used twice. We only make sure the left hand side of the and is part of the loop recurrence. The 'x' in the subtract can be any value.
llvm-svn: 331436
This patch was temporarily reverted because it has exposed bug 37229 on
PowerPC platform. The bug is unrelated to the patch and was just a general
bug in the optimization done for PowerPC platform only. The bug was fixed
by the patch rL331410.
This patch returns the disabled commit since the bug was fixed.
llvm-svn: 331427
Summary:
Machine Instruction flags for fast math support and MIR print support
Reviewers: spatel, arsenm
Reviewed By: arsenm
Subscribers: wdng
Differential Revision: https://reviews.llvm.org/D45781
llvm-svn: 331417
Sinking the and closer to a compare against zero is beneficial on PPC as it
allows us to emit record-form instructions. In the future, we may expand this
to a larger set of operations that feed compares against zero since PPC has
lots of record-form instructions.
Differential revision: https://reviews.llvm.org/D46060
llvm-svn: 331416
The CTR loops pass will insert the decrementing branch instruction in an exiting
block for the loop being transformed. However if that block is part of another
loop as well (whether a nested loop or with irreducible CFG), it is not valid
to use that exiting block. In fact, if the loop hass irreducible CFG, we don't
bother analyzing it and we just bail on the transformation. In practice, this
doesn't lead to a noticeable reduction in the number of loops transformed by
this pass.
Fixes https://bugs.llvm.org/show_bug.cgi?id=37229
Differential Revision: https://reviews.llvm.org/D46162
llvm-svn: 331410
Summary:
Prior to this change, LLVM would in some cases emit *massive* writeout
functions with many 10s of 1000s of function calls in straight-line
code. This is a very wasteful way to represent what are fundamentally
loops and creates a number of scalability issues. Among other things,
register allocating these calls is extremely expensive. While D46127 makes this
less severe, we'll still run into scaling issues with this eventually. If not
in the compile time, just from the code size.
Now the pass builds up global data structures modeling the inputs to
these functions, and simply loops over the data structures calling the
relevant functions with those values. This ensures that the code size is
a fixed and only data size grows with larger amounts of coverage data.
A trivial change to IRBuilder is included to make it easier to build
the constants that make up the global data.
Reviewers: wmi, echristo
Subscribers: sanjoy, mcrosier, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D46357
llvm-svn: 331407
The main goal is to share getMatchTable between the Instruction
Selector and the Testgen.
The commit also contains some NFC only loosely related to refactoring
out the getMatchTable, but strongly related to the initial Testgen
patch (see https://reviews.llvm.org/D43962)
Reviewers: dsanders, aemerson
Reviewed By: dsanders
Subscribers: rovka, kristof.beyls, llvm-commits, dsanders
Differential Revision: https://reviews.llvm.org/D46096
llvm-svn: 331395
Only support UTF-8 (since LLVM contains UTF-8 parsing support
already, and the code even does that already) and Windows-1252
(where most code points has the same value in unicode). Keep the
existing default as only allowing ASCII input.
Using the option type JoinedOrSeparate, since the real rc.exe
handles options in this form, even if llvm-rc uses Separate for
other similar existing options.
Rename the struct SearchParams to WriterParams since it's now used
for more than just include paths.
Add a missing getResourceTypeName method to the BundleResource class,
to fix error printing from within STRINGTABLE resources (used in
tests).
Differential Revision: https://reviews.llvm.org/D46238
llvm-svn: 331391
Summary:
Some of our internal testing detected a major compile time regression which I've
tracked down to:
r278938 - Revert "Reassociate: Reprocess RedoInsts after each inst".
It appears that processing long chains of reassociatable instructions causes
non-linear (potentially exponential) growth in the number of times an
instruction is revisited. For example, the included test revisits instructions
220 times in a 20-instruction test.
It appears that r278938 reversed the order instructions were visited and that
this is preventing scheduled revisits from being cancelled as a result of
visiting the instructions naturally during normal processing. However, simply
reversing the order also harmed the generated code. Upon closer inspection, it
was discovered that revisits occurred in the opposite order to the first pass
(Thanks to escha for spotting that).
This patch makes the revisit order consistent with the first pass which allows
more revisits to be cancelled. This does appear to have a small impact on the
generated code in few cases but it significantly reduces compile-time.
After this patch, our internal test that was most affected by the regression
dropped from ~2 million revisits to ~4k resulting in Reassociate having 0.46%
of the runtime it had before (99.54% improvement).
Here's the summaries reported by lnt for the LLVM test-suite with --benchmarking-only:
| metric | geomean before patch | geomean after patch | delta |
| ----- | ----- | ----- | ----- |
| compile time | 0.1956 | 0.1261 | -35.54% |
| execution time | 0.3240 | 0.3237 | - |
| code size | 7365.4459 | 7365.6079 | - |
The results have a few wins and losses on compile-time, mostly in the +/- 2.5% range. There was one outlier though:
| Performance Regressions - compile_time | Δ | Previous | Current |
| MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk | 9.82% | 2.0473 | 2.2483 |
Reviewers: javed.absar, dberlin
Reviewed By: dberlin
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45734
llvm-svn: 331381
Summary: performAddCombine should run after DAG is legalized; Otherwise generic optimization
in the DAGCombiner can optimize an addcarry+trunc into an addcarry instruction with
illegal types.
Author: FarhanaAleen
Reviewed By: rampitec
Subscribers: llvm-commits, AMDGPU
Differential Revision: https://reviews.llvm.org/D46337
llvm-svn: 331368
An input !foreach expression such as !foreach(a, lst, !add(a, 1))
would be re-emitted by llvm-tblgen -print-records with the first
argument in quotes, giving !foreach("a", lst, !add(a, 1)), which isn't
valid TableGen input syntax.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46352
llvm-svn: 331351
It turned out that readonly argmemonly is not enough.
store 42, %p
%b = barrier(%p)
store 43, %b
the first store is dead, but because barrier was marked as
reading argument memory, it was considered alive. With
inaccessiblememonly it doesn't read the argument, but
it also can't be CSEd.
based on: https://reviews.llvm.org/D32006
llvm-svn: 331338
Summary:
This is a follow up to rL331182. A PHI node can be split up into
several MIR PHI nodes when being selected. When there is a
dbg.value intrinsic that uses the result of such a PHI node we
need to select several DBG_VALUE instructions, with fragment
expressions, in order to do a correct selection.
Reviewers: rnk, aprantl, vsk
Reviewed By: vsk
Subscribers: mattd, llvm-commits, JDevlieghere, aprantl, gbedwell, rnk
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D46329
llvm-svn: 331337
and (or (lshr X, C), ...), 1 --> (X & C') != 0
I initially thought about implementing the minimal pattern in instcombine as mentioned here:
https://bugs.llvm.org/show_bug.cgi?id=37098#c6
...but we need to do better to catch the more general sequence from the motivating test
(more than 2 bits in the compare). And a test-suite run with statistics showed that this
pattern only happened 2 times currently. It would potentially happen more often if
reassociation worked better (D45842), but it's probably still not too frequent?
This is small enough that I didn't see a need to create a whole new class/file within
AggressiveInstCombine. There are likely other relatively small matchers like what was
discussed in D44266 that would slide under foldUnusualPatterns() (name suggestions welcome).
We could potentially also consolidate matchers for ctpop, bswap, etc under here.
Differential Revision: https://reviews.llvm.org/D45986
llvm-svn: 331311
As mentioned in D45986, there's a potential ordering dependency
between instcombine and aggressive-instcombine for detecting these,
so I'm adding a few tests to confirm that the expected folds occur
using -O3 (because aggressive-instcombine only runs at -O3 currently).
llvm-svn: 331308
This adds a some more tests, and adds some notes to tests which are using
a suboptimal lowering.
The constants with suboptimal lowerings seem to be relatively rare in
practice, but it might be a fun project to work on improvements.
llvm-svn: 331304
The logic for this combine is almost identical to the logic for a
(sext (sextload x)) combine.
This commit factors out the logic so it can be shared by both combines,
and corrects the SDLoc assigned in the zext version of the combine.
Prior to this patch, for the given test case, we would apply the
location associated with the udiv instruction to instructions which
perform the load.
Part of: llvm.org/PR37262
llvm-svn: 331303