LV currently only supports power of 2 vectorization factors, which has
been made explicit with the assertion added in
840450549c9199150cbdee29acef756c19660ca1.
However, if the widest type is not a power-of-2 the computed MaxVF won't
be a power-of-2 either. This patch updates computeFeasibleMaxVF to
ensure the returned value is a power-of-2 by rounding down to the
nearest power-of-2.
Fixes PR46139.
Reviewers: Ayal, gilr, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D80870
gc.relocate intrinsic is special in that its second and third operands
are not real values, but indices into relocate's parent statepoint list
of GC pointers.
To be CSE'd, they need special handling in `isEqual()` and `getHashCode()`.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D80445
MIPS 64-bit ABI does not provide special PC-relative relocation like
R_MIPS_PC32 in 32-bit case. But we can use a "chain of relocation"
defined by N64 ABIs. In that case one relocation record might contain up
to three relocations which applied sequentially. Width of a final relocation
mask applied to the result of relocation depends on the last relocation
in the chain. In case of 64-bit PC-relative relocation we need the following
chain: `R_MIPS_PC32 | R_MIPS_64`. The first relocation calculates an
offset, but does not truncate the result. The second relocation just
apply calculated result as a 64-bit value.
The 64-bit PC-relative relocation might be useful in generation of
`.eh_frame` sections to escape passing `-Wl,-z,notext` flags to linker.
Differential Revision: https://reviews.llvm.org/D80390
Summary:
Support I32/F32 registers in assembler parser and add regression tests of LD/ST
instructions.
Differential Revision: https://reviews.llvm.org/D80777
Summary:
Using a .data() member on a StringRef was discarding the StringRef
size, breaking llvm-exegesis on machines with counter sums (e.g.
Zen2).
Reviewers: oontvoo
Subscribers: mstojanovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80982
This patch adds clang options:
-fbasic-block-sections={all,<filename>,labels,none} and
-funique-basic-block-section-names.
LLVM Support for basic block sections is already enabled.
+ -fbasic-block-sections={all, <file>, labels, none} : Enables/Disables basic
block sections for all or a subset of basic blocks. "labels" only enables
basic block symbols.
+ -funique-basic-block-section-names: Enables unique section names for
basic block sections, disabled by default.
Differential Revision: https://reviews.llvm.org/D68049
Do not spill UNDEF GC values. Instead, replace corresponding
gc.relocate intrinsic with an (arbitrary, but recognizable) constant.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D80714
Summary:
Combine unmerge(trunc) to enable other merge combines.
Without this combine, the scalar unmerge(trunc(merge))
pattern cannot be combined and easily lead to
hard-to-legalize merge/unmerge artifacts.
Reviewed By: arsenm
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79567
When fixing probability of unreachable edges in
BranchProbabilityInfo::calcMetadataWeights() proportionally distribute
remainder probability over the reachable edges. The old implementation
distributes the remainder probability evenly.
See examples in the fixed tests.
Reviewers: yamauchi, ebrevnov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80611
These cases all follow the same pattern:
struct A {
friend class X;
//...
class X {};
};
But 'friend class X;' injects 'X' into the surrounding namespace scope,
rather than introducing a class member. So the second 'class X {}' is a
completely different type, which changes the meaning of the earlier name
'X' from '::X' to 'A::X'.
Additionally, the friend declaration is pointless -- members of a class
don't need to be befriended to be able to access private members.
We looked through a truncate to get to the load. So we should be
deleting the truncate first.
There is a check that the node is really unused before deleting
so this didn't cause a functional issue.
Summary:
Sketch the outline for a new document that explains how to update debug
info in various kinds of code transformations.
Some of the guidelines that belong in HowToUpdateDebugInfo.rst were in
SourceLevelDebugging.rst already under the debugify section. It seems
like the distinction between the two docs ought to be that the former is
more prescriptive, while the latter is more descriptive.
To that end I've consolidated the "how to update debug info" guidelines
which were in SourceLevelDebugging.rst into the new doc, along with the
information about using "debugify" to test transformations. Since we've
added a mir-debugify pass, I've described that as well.
Reviewers: aprantl, jmorse, chrisjackson, dsanders
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80052
The concept of G_GLOBAL_VALUE is nice and simple, but always using it as the
representation for global var addressing until selection time creates some
problems in optimizing accesses in certain code/relocation models.
The problem comes from trying to optimize adrp -> add -> load/store sequences
in the most common "small" code model. These accesses can be optimized into an
adrp -> load with the add offset being folded into the load's immediate field.
If we try to keep all global var references as a single generic instruction
then by the time we get to the complex operand trying to match these, we end up
generating an adrp at the point of use. The real issue here is that we don't
have any form of CSE during selection, so the code size will bloat from many
redundant adrp's.
This patch custom legalizes small code mode non-GOT G_GLOBALs into target ADRP
and a new "target specific generic opcode" G_ADD_LOW. We also teach the
localizer to localize these instructions via the custom hook that was added
recently. Finally, the complex pattern for indexed loads/stores is extended to
try to fold these G_ADD_LOW instructions into the load immediate.
On -O0 CTMark, we see a 0.8% geomean code size improvement. We should also see
some minor performance improvements too.
Differential Revision: https://reviews.llvm.org/D78465
between the two instructions.
If there's a pattern like:
$xA = ADRP foo @PAGE
[some killing use of reg Xb]
$Xb = ADDXri $Xa, 0, @PAGEOFF
CollectLOH would create an AdrpAdd LOH that resulted in the linker optimizing
this sequence into:
$xB = ADR foo
[some killing use of reg $Xb]
... and therefore clobbers the live $Xb register that was used by the
instruction in between.
This was discovered by a GlobalISel patch D78465 which broke up global variable
accesses into two pseudos, which in some cases could be moved apart.
Differential Revision: https://reviews.llvm.org/D80834
Summary: This changes Clang's generation of OpenMP runtime functions to use the types and functions defined in OpenMPKinds and OpenMPConstants. New OpenMP runtime function information should now be added to OMPKinds.def. This patch also changed the definitions of __kmpc_push_num_teams and __kmpc_copyprivate to match those found in the runtime.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: jfb, AndreyChurbanov, openmp-commits, fghanim, hiraditya, sstefan1, cfe-commits, llvm-commits
Tags: #openmp, #clang, #llvm
Differential Revision: https://reviews.llvm.org/D80222
Update for upstream comments. Improve test by writing all the debug
info by hand.
Reviewers: dblaikie, jhenderson
Subscribers: hiraditya, MaskRay, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80168
Summary:
This simplifies the interface by storing the function analysis manager
with the InlineAdvisor, and, thus, not requiring it be passed each time
we inquire for an advice.
Reviewers: davidxl, asbirlea
Subscribers: eraman, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80405
This patch implements matrix index expressions
(matrix[RowIdx][ColumnIdx]).
It does so by introducing a new MatrixSubscriptExpr(Base, RowIdx, ColumnIdx).
MatrixSubscriptExprs are built in 2 steps in ActOnMatrixSubscriptExpr. First,
if the base of a subscript is of matrix type, we create a incomplete
MatrixSubscriptExpr(base, idx, nullptr). Second, if the base is an incomplete
MatrixSubscriptExpr, we create a complete
MatrixSubscriptExpr(base->getBase(), base->getRowIdx(), idx)
Similar to vector elements, it is not possible to take the address of
a MatrixSubscriptExpr.
For CodeGen, a new MatrixElt type is added to LValue, which is very
similar to VectorElt. The only difference is that we may need to cast
the type of the base from an array to a vector type when accessing it.
Reviewers: rjmccall, anemet, Bigcheese, rsmith, martong
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D76791
SimplifyDemandedVectorElts() bails out on ScalableVectorType
anyway, but we can exit faster with the external check.
Move this to a helper function because there are likely other
vector folds that we can try here.
In this awkward case, we have to emit custom pseudo-constrained FP
wrappers. InstrEmitter concludes that since a mayRaiseFPException
instruction had a chain, it can't add nofpexcept.
Test deferred until mayRaiseFPException is really set on everything.
Summary:
Instead of iterating over all VarLoc IDs in removeEntryValue(), just
iterate over the interval reserved for entry value VarLocs. This changes
the iteration order, hence the test update -- otherwise this is NFC.
This appears to give an ~8.5x wall time speed-up for LiveDebugValues when
compiling sqlite3.c 3.30.1 with a Release clang (on my machine):
```
---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name ---
Before: 2.5402 ( 18.8%) 0.0050 ( 0.4%) 2.5452 ( 17.3%) 2.5452 ( 17.3%) Live DEBUG_VALUE analysis
After: 0.2364 ( 2.1%) 0.0034 ( 0.3%) 0.2399 ( 2.0%) 0.2398 ( 2.0%) Live DEBUG_VALUE analysis
```
The change in removeEntryValue() is the only one that appears to affect
wall time, but for consistency (and to resolve a pending TODO), I made
the analogous changes for iterating over SpillLocKind VarLocs.
Reviewers: nikic, aprantl, jmorse, djtodoro
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80684
The AMDGPU non-strict fdiv lowering needs to introduce an FP mode
switch in some cases, and has custom nodes to provide chain/glue for
the intermediate FP operations. We need to propagate nofpexcept here,
but getNode was dropping the flags.
Adding nofpexcept in the AMDGPU custom lowering is left to a future
patch.
Also fix a second case where flags were dropped, but in this case it
seems it just didn't handle this number of operands.
Test will be included in future AMDGPU patch.
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.
To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.
The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.
Reviewers: davidxl
Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79831
Summary:
While clustering mem ops, AMDGPU target needs to consider number of clustered bytes
to decide on max number of mem ops that can be clustered. This patch adds support to pass
number of clustered bytes to target mem ops clustering logic.
Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar
Reviewed By: foad
Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80545
This flag (and the whole field DT_FLAGS_1) originated from Solaris. I intend to use it in an LLD patch D80872.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D80871
As discussed in https://bugs.llvm.org/show_bug.cgi?id=45951 and
D80584, the name 'tmp' is almost always a bad choice, but we have
a legacy of regression tests with that name because it was baked
into utils/update_test_checks.py.
This change makes -instnamer more consistent (already using "arg"
and "bb", the common LLVM shorthand). And it avoids the conflict
in telling users of the FileCheck script to run "-instnamer" to
create a better regression test and having that cause a warn/fail
in update_test_checks.py.
This will ensure that nothing can ever start parsing data from a future
sequence and part-read data will be returned as 0 instead.
Reviewed by: aprantl, labath
Differential Revision: https://reviews.llvm.org/D80796