1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Target/AArch64/AArch64RegisterBankInfo.cpp

729 lines
29 KiB
C++
Raw Normal View History

//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AArch64RegisterBankInfo.h"
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#define GET_TARGET_REGBANK_IMPL
#include "AArch64GenRegisterBank.inc"
// This file will be TableGen'ed at some point.
#include "AArch64GenRegisterBankInfo.def"
using namespace llvm;
AArch64RegisterBankInfo::AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
: AArch64GenRegisterBankInfo() {
static bool AlreadyInit = false;
// We have only one set of register banks, whatever the subtarget
// is. Therefore, the initialization of the RegBanks table should be
// done only once. Indeed the table of all register banks
// (AArch64::RegBanks) is unique in the compiler. At some point, it
// will get tablegen'ed and the whole constructor becomes empty.
if (AlreadyInit)
return;
AlreadyInit = true;
const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
(void)RBGPR;
assert(&AArch64::GPRRegBank == &RBGPR &&
"The order in RegBanks is messed up");
const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
(void)RBFPR;
assert(&AArch64::FPRRegBank == &RBFPR &&
"The order in RegBanks is messed up");
const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
(void)RBCCR;
assert(&AArch64::CCRegBank == &RBCCR && "The order in RegBanks is messed up");
// The GPR register bank is fully defined by all the registers in
// GR64all + its subclasses.
assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
"Subclass not added?");
assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");
// The FPR register bank is fully defined by all the registers in
// GR64all + its subclasses.
assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
"Subclass not added?");
assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
"Subclass not added?");
assert(RBFPR.getSize() == 512 &&
"FPRs should hold up to 512-bit via QQQQ sequence");
assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
"Class not added?");
assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit");
// Check that the TableGen'ed like file is in sync we our expectations.
// First, the Idx.
assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR,
{PMI_GPR32, PMI_GPR64}) &&
"PartialMappingIdx's are incorrectly ordered");
assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR,
{PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128,
PMI_FPR256, PMI_FPR512}) &&
"PartialMappingIdx's are incorrectly ordered");
// Now, the content.
// Check partial mapping.
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \
do { \
assert( \
checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
#Idx " is incorrectly initialized"); \
} while (false)
CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);
// Check value mapping.
#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \
do { \
assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \
PartialMappingIdx::PMI_First##RBName, Size, \
Offset) && \
#RBName #Size " " #Offset " is incorrectly initialized"); \
} while (false)
#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)
CHECK_VALUEMAP(GPR, 32);
CHECK_VALUEMAP(GPR, 64);
CHECK_VALUEMAP(FPR, 16);
CHECK_VALUEMAP(FPR, 32);
CHECK_VALUEMAP(FPR, 64);
CHECK_VALUEMAP(FPR, 128);
CHECK_VALUEMAP(FPR, 256);
CHECK_VALUEMAP(FPR, 512);
// Check the value mapping for 3-operands instructions where all the operands
// map to the same value mapping.
#define CHECK_VALUEMAP_3OPS(RBName, Size) \
do { \
CHECK_VALUEMAP_IMPL(RBName, Size, 0); \
CHECK_VALUEMAP_IMPL(RBName, Size, 1); \
CHECK_VALUEMAP_IMPL(RBName, Size, 2); \
} while (false)
CHECK_VALUEMAP_3OPS(GPR, 32);
CHECK_VALUEMAP_3OPS(GPR, 64);
CHECK_VALUEMAP_3OPS(FPR, 32);
CHECK_VALUEMAP_3OPS(FPR, 64);
CHECK_VALUEMAP_3OPS(FPR, 128);
CHECK_VALUEMAP_3OPS(FPR, 256);
CHECK_VALUEMAP_3OPS(FPR, 512);
#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \
do { \
unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \
unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \
(void)PartialMapDstIdx; \
(void)PartialMapSrcIdx; \
const ValueMapping *Map = getCopyMapping( \
AArch64::RBNameDst##RegBankID, AArch64::RBNameSrc##RegBankID, Size); \
(void)Map; \
assert(Map[0].BreakDown == \
&AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
Map[0].NumBreakDowns == 1 && #RBNameDst #Size \
" Dst is incorrectly initialized"); \
assert(Map[1].BreakDown == \
&AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
Map[1].NumBreakDowns == 1 && #RBNameSrc #Size \
" Src is incorrectly initialized"); \
\
} while (false)
CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32);
CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64);
CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32);
CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32);
CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64);
CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64);
#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \
do { \
unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \
unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \
(void)PartialMapDstIdx; \
(void)PartialMapSrcIdx; \
const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \
(void)Map; \
assert(Map[0].BreakDown == \
&AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \
Map[0].NumBreakDowns == 1 && "FPR" #DstSize \
" Dst is incorrectly initialized"); \
assert(Map[1].BreakDown == \
&AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \
Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \
" Src is incorrectly initialized"); \
\
} while (false)
CHECK_VALUEMAP_FPEXT(32, 16);
CHECK_VALUEMAP_FPEXT(64, 16);
CHECK_VALUEMAP_FPEXT(64, 32);
CHECK_VALUEMAP_FPEXT(128, 64);
assert(verify(TRI) && "Invalid register bank information");
}
unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A,
const RegisterBank &B,
unsigned Size) const {
// What do we do with different size?
// copy are same size.
// Will introduce other hooks for different size:
// * extract cost.
// * build_sequence cost.
// Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
// FIXME: This should be deduced from the scheduling model.
if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
// FMOVXDr or FMOVWSr.
return 5;
if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
// FMOVDXr or FMOVSWr.
return 4;
return RegisterBankInfo::copyCost(A, B, Size);
}
const RegisterBank &AArch64RegisterBankInfo::getRegBankFromRegClass(
const TargetRegisterClass &RC) const {
switch (RC.getID()) {
case AArch64::FPR8RegClassID:
case AArch64::FPR16RegClassID:
case AArch64::FPR32RegClassID:
case AArch64::FPR64RegClassID:
case AArch64::FPR128RegClassID:
case AArch64::FPR128_loRegClassID:
case AArch64::DDRegClassID:
case AArch64::DDDRegClassID:
case AArch64::DDDDRegClassID:
case AArch64::QQRegClassID:
case AArch64::QQQRegClassID:
case AArch64::QQQQRegClassID:
return getRegBank(AArch64::FPRRegBankID);
case AArch64::GPR32commonRegClassID:
case AArch64::GPR32RegClassID:
case AArch64::GPR32spRegClassID:
case AArch64::GPR32sponlyRegClassID:
case AArch64::GPR32allRegClassID:
case AArch64::GPR64commonRegClassID:
case AArch64::GPR64RegClassID:
case AArch64::GPR64spRegClassID:
case AArch64::GPR64sponlyRegClassID:
case AArch64::GPR64allRegClassID:
hwasan: Move memory access checks into small outlined functions on aarch64. Each hwasan check requires emitting a small piece of code like this: https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses The problem with this is that these code blocks typically bloat code size significantly. An obvious solution is to outline these blocks of code. In fact, this has already been implemented under the -hwasan-instrument-with-calls flag. However, as currently implemented this has a number of problems: - The functions use the same calling convention as regular C functions. This means that the backend must spill all temporary registers as required by the platform's C calling convention, even though the check only needs two registers on the hot path. - The functions take the address to be checked in a fixed register, which increases register pressure. Both of these factors can diminish the code size effect and increase the performance hit of -hwasan-instrument-with-calls. The solution that this patch implements is to involve the aarch64 backend in outlining the checks. An intrinsic and pseudo-instruction are created to represent a hwasan check. The pseudo-instruction is register allocated like any other instruction, and we allow the register allocator to select almost any register for the address to check. A particular combination of (register selection, type of check) triggers the creation in the backend of a function to handle the check for specifically that pair. The resulting functions are deduplicated by the linker. The pseudo-instruction (really the function) is specified to preserve all registers except for the registers that the AAPCS specifies may be clobbered by a call. To measure the code size and performance effect of this change, I took a number of measurements using Chromium for Android on aarch64, comparing a browser with inlined checks (the baseline) against a browser with outlined checks. Code size: Size of .text decreases from 243897420 to 171619972 bytes, or a 30% decrease. Performance: Using Chromium's blink_perf.layout microbenchmarks I measured a median performance regression of 6.24%. The fact that a perf/size tradeoff is evident here suggests that we might want to make the new behaviour conditional on -Os/-Oz. But for now I've enabled it unconditionally, my reasoning being that hwasan users typically expect a relatively large perf hit, and ~6% isn't really adding much. We may want to revisit this decision in the future, though. I also tried experimenting with varying the number of registers selectable by the hwasan check pseudo-instruction (which would result in fewer variants being created), on the hypothesis that creating fewer variants of the function would expose another perf/size tradeoff by reducing icache pressure from the check functions at the cost of register pressure. Although I did observe a code size increase with fewer registers, I did not observe a strong correlation between the number of registers and the performance of the resulting browser on the microbenchmarks, so I conclude that we might as well use ~all registers to get the maximum code size improvement. My results are below: Regs | .text size | Perf hit -----+------------+--------- ~all | 171619972 | 6.24% 16 | 171765192 | 7.03% 8 | 172917788 | 5.82% 4 | 177054016 | 6.89% Differential Revision: https://reviews.llvm.org/D56954 llvm-svn: 351920
2019-01-23 03:20:10 +01:00
case AArch64::GPR64noipRegClassID:
case AArch64::GPR64common_and_GPR64noipRegClassID:
case AArch64::GPR64noip_and_tcGPR64RegClassID:
case AArch64::tcGPR64RegClassID:
case AArch64::WSeqPairsClassRegClassID:
case AArch64::XSeqPairsClassRegClassID:
return getRegBank(AArch64::GPRRegBankID);
case AArch64::CCRRegClassID:
return getRegBank(AArch64::CCRegBankID);
default:
llvm_unreachable("Register class not supported");
}
}
RegisterBankInfo::InstructionMappings
AArch64RegisterBankInfo::getInstrAlternativeMappings(
const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
switch (MI.getOpcode()) {
case TargetOpcode::G_OR: {
// 32 and 64-bit or can be mapped on either FPR or
// GPR for the same cost.
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
if (Size != 32 && Size != 64)
break;
// If the instruction has any implicit-defs or uses,
// do not mess with it.
if (MI.getNumOperands() != 3)
break;
InstructionMappings AltMappings;
const InstructionMapping &GPRMapping = getInstructionMapping(
/*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
/*NumOperands*/ 3);
const InstructionMapping &FPRMapping = getInstructionMapping(
/*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
/*NumOperands*/ 3);
AltMappings.push_back(&GPRMapping);
AltMappings.push_back(&FPRMapping);
return AltMappings;
}
case TargetOpcode::G_BITCAST: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
if (Size != 32 && Size != 64)
break;
// If the instruction has any implicit-defs or uses,
// do not mess with it.
if (MI.getNumOperands() != 2)
break;
InstructionMappings AltMappings;
const InstructionMapping &GPRMapping = getInstructionMapping(
/*ID*/ 1, /*Cost*/ 1,
getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
/*NumOperands*/ 2);
const InstructionMapping &FPRMapping = getInstructionMapping(
/*ID*/ 2, /*Cost*/ 1,
getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
/*NumOperands*/ 2);
const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
/*ID*/ 3,
/*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
/*NumOperands*/ 2);
const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
/*ID*/ 3,
/*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
/*NumOperands*/ 2);
AltMappings.push_back(&GPRMapping);
AltMappings.push_back(&FPRMapping);
AltMappings.push_back(&GPRToFPRMapping);
AltMappings.push_back(&FPRToGPRMapping);
return AltMappings;
}
case TargetOpcode::G_LOAD: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
if (Size != 64)
break;
// If the instruction has any implicit-defs or uses,
// do not mess with it.
if (MI.getNumOperands() != 2)
break;
InstructionMappings AltMappings;
const InstructionMapping &GPRMapping = getInstructionMapping(
/*ID*/ 1, /*Cost*/ 1,
getOperandsMapping({getValueMapping(PMI_FirstGPR, Size),
// Addresses are GPR 64-bit.
getValueMapping(PMI_FirstGPR, 64)}),
/*NumOperands*/ 2);
const InstructionMapping &FPRMapping = getInstructionMapping(
/*ID*/ 2, /*Cost*/ 1,
getOperandsMapping({getValueMapping(PMI_FirstFPR, Size),
// Addresses are GPR 64-bit.
getValueMapping(PMI_FirstGPR, 64)}),
/*NumOperands*/ 2);
AltMappings.push_back(&GPRMapping);
AltMappings.push_back(&FPRMapping);
return AltMappings;
}
default:
break;
}
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
void AArch64RegisterBankInfo::applyMappingImpl(
const OperandsMapper &OpdMapper) const {
switch (OpdMapper.getMI().getOpcode()) {
case TargetOpcode::G_OR:
case TargetOpcode::G_BITCAST:
case TargetOpcode::G_LOAD:
// Those ID must match getInstrAlternativeMappings.
assert((OpdMapper.getInstrMapping().getID() >= 1 &&
OpdMapper.getInstrMapping().getID() <= 4) &&
"Don't know how to handle that ID");
return applyDefaultMapping(OpdMapper);
default:
llvm_unreachable("Don't know how to handle that operation");
}
}
/// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode,
/// having only floating-point operands.
static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FNEG:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FLOG10:
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FABS:
case TargetOpcode::G_FEXP:
return true;
}
return false;
}
const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
const MachineInstr &MI) const {
const unsigned Opc = MI.getOpcode();
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned NumOperands = MI.getNumOperands();
assert(NumOperands <= 3 &&
"This code is for instructions with 3 or less operands");
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
unsigned Size = Ty.getSizeInBits();
bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR;
#ifndef NDEBUG
// Make sure all the operands are using similar size and type.
// Should probably be checked by the machine verifier.
// This code won't catch cases where the number of lanes is
// different between the operands.
// If we want to go to that level of details, it is probably
// best to check that the types are the same, period.
// Currently, we just check that the register banks are the same
// for each types.
for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
assert(
AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(
RBIdx, OpTy.getSizeInBits()) ==
AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) &&
"Operand has incompatible size");
bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
(void)OpIsFPR;
assert(IsFPR == OpIsFPR && "Operand has incompatible type");
}
#endif // End NDEBUG.
return getInstructionMapping(DefaultMappingID, 1,
getValueMapping(RBIdx, Size), NumOperands);
}
const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
const unsigned Opc = MI.getOpcode();
// Try the default logic for non-generic instructions that are either copies
// or already have some operands assigned to banks.
if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
Opc == TargetOpcode::G_PHI) {
const RegisterBankInfo::InstructionMapping &Mapping =
getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
}
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
switch (Opc) {
// G_{F|S|U}REM are not listed because they are not legal.
// Arithmetic ops.
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
case TargetOpcode::G_GEP:
case TargetOpcode::G_MUL:
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UDIV:
// Bitwise ops.
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
// Shifts.
case TargetOpcode::G_SHL:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_ASHR:
// Floating point ops.
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
return getSameKindOfOperandsMapping(MI);
case TargetOpcode::G_FPEXT: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
return getInstructionMapping(
DefaultMappingID, /*Cost*/ 1,
getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
/*NumOperands*/ 2);
}
case TargetOpcode::COPY: {
unsigned DstReg = MI.getOperand(0).getReg();
unsigned SrcReg = MI.getOperand(1).getReg();
// Check if one of the register is not a generic register.
if ((TargetRegisterInfo::isPhysicalRegister(DstReg) ||
!MRI.getType(DstReg).isValid()) ||
(TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
!MRI.getType(SrcReg).isValid())) {
const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
if (!DstRB)
DstRB = SrcRB;
else if (!SrcRB)
SrcRB = DstRB;
// If both RB are null that means both registers are generic.
// We shouldn't be here.
assert(DstRB && SrcRB && "Both RegBank were nullptr");
unsigned Size = getSizeInBits(DstReg, MRI, TRI);
return getInstructionMapping(
DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
// We only care about the mapping of the destination.
/*NumOperands*/ 1);
}
// Both registers are generic, use G_BITCAST.
LLVM_FALLTHROUGH;
}
case TargetOpcode::G_BITCAST: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
unsigned Size = DstTy.getSizeInBits();
bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
const RegisterBank &DstRB =
DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
const RegisterBank &SrcRB =
SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
return getInstructionMapping(
DefaultMappingID, copyCost(DstRB, SrcRB, Size),
getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
// We only care about the mapping of the destination for COPY.
/*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
}
default:
break;
}
unsigned NumOperands = MI.getNumOperands();
// Track the size and bank of each register. We don't do partial mappings.
SmallVector<unsigned, 4> OpSize(NumOperands);
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
auto &MO = MI.getOperand(Idx);
if (!MO.isReg() || !MO.getReg())
continue;
LLT Ty = MRI.getType(MO.getReg());
OpSize[Idx] = Ty.getSizeInBits();
// As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs.
// For floating-point instructions, scalars go in FPRs.
if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc) ||
Ty.getSizeInBits() > 64)
OpRegBankIdx[Idx] = PMI_FirstFPR;
else
OpRegBankIdx[Idx] = PMI_FirstGPR;
}
unsigned Cost = 1;
// Some of the floating-point instructions have mixed GPR and FPR operands:
// fine-tune the computed mapping.
switch (Opc) {
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
if (MRI.getType(MI.getOperand(0).getReg()).isVector())
break;
OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
break;
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
if (MRI.getType(MI.getOperand(0).getReg()).isVector())
break;
OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
break;
case TargetOpcode::G_FCMP:
OpRegBankIdx = {PMI_FirstGPR,
/* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
break;
case TargetOpcode::G_BITCAST:
// This is going to be a cross register bank copy and this is expensive.
if (OpRegBankIdx[0] != OpRegBankIdx[1])
Cost = copyCost(
*AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
*AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
OpSize[0]);
break;
case TargetOpcode::G_LOAD:
// Loading in vector unit is slightly more expensive.
// This is actually only true for the LD1R and co instructions,
// but anyway for the fast mode this number does not matter and
// for the greedy mode the cost of the cross bank copy will
// offset this number.
// FIXME: Should be derived from the scheduling model.
if (OpRegBankIdx[0] != PMI_FirstGPR)
Cost = 2;
else
// Check if that load feeds fp instructions.
// In that case, we want the default mapping to be on FPR
// instead of blind map every scalar to GPR.
for (const MachineInstr &UseMI :
MRI.use_instructions(MI.getOperand(0).getReg())) {
// If we have at least one direct use in a FP instruction,
// assume this was a floating point load in the IR.
// If it was not, we would have had a bitcast before
// reaching that instruction.
unsigned UseOpc = UseMI.getOpcode();
if (isPreISelGenericFloatingPointOpcode(UseOpc) ||
// Check if we feed a copy-like instruction with
// floating point constraints. In that case, we are still
// feeding fp instructions, but indirectly
// (e.g., through ABI copies).
((UseOpc == TargetOpcode::COPY || UseMI.isPHI()) &&
getRegBank(UseMI.getOperand(0).getReg(), MRI, TRI) ==
&AArch64::FPRRegBank)) {
OpRegBankIdx[0] = PMI_FirstFPR;
break;
}
}
break;
case TargetOpcode::G_STORE:
// Check if that store is fed by fp instructions.
if (OpRegBankIdx[0] == PMI_FirstGPR) {
unsigned VReg = MI.getOperand(0).getReg();
if (!VReg)
break;
MachineInstr *DefMI = MRI.getVRegDef(VReg);
unsigned DefOpc = DefMI->getOpcode();
if (isPreISelGenericFloatingPointOpcode(DefOpc) ||
// Check if we come from a copy-like instruction with
// floating point constraints. In that case, we are still
// fed by fp instructions, but indirectly
// (e.g., through ABI copies).
((DefOpc == TargetOpcode::COPY || DefMI->isPHI()) &&
getRegBank(DefMI->getOperand(0).getReg(), MRI, TRI) ==
&AArch64::FPRRegBank))
OpRegBankIdx[0] = PMI_FirstFPR;
break;
}
break;
case TargetOpcode::G_UNMERGE_VALUES: {
// If the first operand belongs to a FPR register bank, then make sure that
// we preserve that.
if (OpRegBankIdx[0] != PMI_FirstGPR)
break;
// Helper lambda that returns true if MI has floating point constraints.
auto HasFPConstraints = [&TRI, &MRI, this](MachineInstr &MI) {
unsigned Op = MI.getOpcode();
// Do we have an explicit floating point instruction?
if (isPreISelGenericFloatingPointOpcode(Op))
return true;
// No. Check if we have a copy-like instruction. If we do, then we could
// still be fed by floating point instructions.
if (Op != TargetOpcode::COPY && !MI.isPHI())
return false;
// MI is copy-like. Return true if it's using an FPR.
return getRegBank(MI.getOperand(0).getReg(), MRI, TRI) ==
&AArch64::FPRRegBank;
};
LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
// UNMERGE into scalars from a vector should always use FPR.
// Likewise if any of the uses are FP instructions.
if (SrcTy.isVector() ||
any_of(MRI.use_instructions(MI.getOperand(0).getReg()),
[&](MachineInstr &MI) { return HasFPConstraints(MI); })) {
// Set the register bank of every operand to FPR.
for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
Idx < NumOperands; ++Idx)
OpRegBankIdx[Idx] = PMI_FirstFPR;
}
break;
}
case TargetOpcode::G_BUILD_VECTOR:
// If the first source operand belongs to a FPR register bank, then make
// sure that we preserve that.
if (OpRegBankIdx[1] != PMI_FirstGPR)
break;
unsigned VReg = MI.getOperand(1).getReg();
if (!VReg)
break;
// Get the instruction that defined the source operand reg, and check if
// it's a floating point operation.
MachineInstr *DefMI = MRI.getVRegDef(VReg);
unsigned DefOpc = DefMI->getOpcode();
if (isPreISelGenericFloatingPointOpcode(DefOpc)) {
// Have a floating point op.
// Make sure every operand gets mapped to a FPR register class.
unsigned NumOperands = MI.getNumOperands();
for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
OpRegBankIdx[Idx] = PMI_FirstFPR;
}
break;
}
// Finally construct the computed mapping.
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
if (!Mapping->isValid())
return getInvalidInstructionMapping();
OpdsMapping[Idx] = Mapping;
}
}
return getInstructionMapping(DefaultMappingID, Cost,
getOperandsMapping(OpdsMapping), NumOperands);
}