into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
the one used by the JIT. Remove all forms of
addPassesToEmitFileFinish except the one used by the static
code generator. Inline the remaining version of
addPassesToEmitFileFinish into its only caller.
llvm-svn: 95109
Target independent isel should always pass along the "tail call" property. Change
target hook LowerCall's parameter "isTailCall" into a refernce. If the target
decides it's impossible to honor the tail call request, it should set isTailCall
to false to make target independent isel happy.
llvm-svn: 94626
which is more convenient, and change getPICJumpTableRelocBaseExpr
to take a MachineFunction to match.
Next, move the X86 code that create a PICBase symbol to
X86TargetLowering::getPICBaseSymbol from
X86MCInstLower::GetPICBaseSymbol, which was an asmprinter specific
library. This eliminates a 'gross hack', and allows us to
implement X86ISelLowering::getPICJumpTableRelocBaseExpr which now
calls it.
This in turn allows us to eliminate the
X86AsmPrinter::printPICJumpTableSetLabel method, which was the
only overload of printPICJumpTableSetLabel.
llvm-svn: 94526
1. MachineJumpTableInfo is now created lazily for a function the first time
it actually makes a jump table instead of for every function.
2. The encoding of jump table entries is now described by the
MachineJumpTableInfo::JTEntryKind enum. This enum is determined by the
TLI::getJumpTableEncoding() hook, instead of by lots of code scattered
throughout the compiler that "knows" that jump table entries are always
32-bits in pic mode (for example).
3. The size and alignment of jump table entries is now calculated based on
their kind, instead of at machinefunction creation time.
Future work includes using the EntryKind in more places in the compiler,
eliminating other logic that "knows" the layout of jump tables in various
situations.
llvm-svn: 94470
exactly like an MCAsmLexer. (The difference is that the
TargetAsmLexer knows how to handle target-specific stuff
like registers, whereas the MCAsmLexer is fully generic.)
llvm-svn: 94237
1. TargetLoweringObjectFileMachO should decide if something
goes in zerofill instead of having every target do it.
2. TargetLoweringObjectFileMachO should assign said symbols to
the right MCSection, the asmprinters should just emit to the
right section.
3. Since all zerofill stuff goes through mcstreamer anymore,
MAI can have a bool "haszerofill" instead of having the textual
directive to emit.
llvm-svn: 93838
idea, but unfortunately necessary.
- Default to using 4-bytes for the LSDA pointer encoding to agree with the
encoded value in the CIE.
llvm-svn: 93753
to Mangler. Now MCSymbol just decides whether to slap quotes around
a symbol when printing it.
This also fixes some weirdness where two MCSymbols could be created
for the same symbol, if one needed to be mangled and got mangled to
the other one.
llvm-svn: 93690
The CIE says that the LSDA point in the FDE section is an "sdata4". That's fine,
but we need it to actually be 4-bytes in the FDE for some platforms. Allow
individual platforms to decide for themselves.
llvm-svn: 93616
target-dependent memory address representation in it.
Restore X86 printing of DEBUG_VALUE; lowering is
done in X86RegisterInfo using the normal algorithm.
llvm-svn: 93565
Remove most of old Mach-O Writer support, it has been replaced by MCMachOStreamer
Further refactoring to completely remove MachOWriter and drive the object file
writer with the AsmPrinter MCInst/MCSection logic is forthcoming.
llvm-svn: 93527
the new ParseInstruction method just parses and returns a list of
target operands. A new MatchInstruction interface is used to
turn the operand list into an MCInst.
This requires new/deleting all the operands, but it also gives
targets the ability to use polymorphic operands if they want to.
llvm-svn: 93469
instead of returning it in an std::string. Based on this change:
1. Change TargetLoweringObjectFileCOFF::getCOFFSection to take a StringRef
2. Change a bunch of targets to call makeNameProper with a smallstring,
making several of them *much* more efficient.
3. Rewrite Mangler::makeNameProper to not build names and then prepend
prefixes, not use temporary std::strings, and to avoid other crimes.
llvm-svn: 93298
For now, this pass is fairly conservative. It only perform the replacement when both the pre- and post- extension values are used in the block. It will miss cases where the post-extension values are live, but not used.
llvm-svn: 93278
instruction is copy like where the source and destination registers can
overlap. This is to be used by the coalescable to coalesce the source and
destination registers of instructions like X86::MOVSX64rr32. Apparently
some crazy people believe the coalescer is too simple.
llvm-svn: 93210
(OP (trunc x), (trunc y)) -> (trunc (OP x, y))
Unfortunately this simple change causes dag combine to infinite looping. The problem is the shrink demanded ops optimization tend to canonicalize expressions in the opposite manner. That is badness. This patch disable those optimizations in dag combine but instead it is done as a late pass in sdisel.
This also exposes some deficiencies in dag combine and x86 setcc / brcond lowering. Teach them to look pass ISD::TRUNCATE in various places.
llvm-svn: 92849
return partial registers. This affected the back-end lowering code some.
Also patch up some places I missed before in the "get" functions.
llvm-svn: 91880
by allowing backends to override routines that will default
the JIT and Static code generation to an appropriate code model
for the architecture.
Should fix PR 5773.
llvm-svn: 91824
- Move DisableScheduling flag into TargetOption.h
- Move SDNodeOrdering into its own header file. Give it a minimal interface that
doesn't conflate construction with storage.
- Move assigning the ordering into the SelectionDAGBuilder.
This isn't used yet, so there should be no functional changes.
llvm-svn: 91727
that it doesn't have dangling pointers when abstract types are resolved. This
modifies it somewhat to address comments: making the "StructLayoutMap" an
anonymous structure, calling "removeAbstractTypeUser" when appropriate, and
adding asserts where helpful.
llvm-svn: 90362
for all the processors where I have tried it, and even when it might not help
performance, the cost is quite low. The opportunities for duplicating
indirect branches are limited by other factors so code size does not change
much due to tail duplicating indirect branches aggressively.
llvm-svn: 90144
Make tail duplication of indirect branches much more aggressive (for targets
that indicate that it is profitable), based on further experience with
this transformation. I compiled 3 large applications with and without
this more aggressive tail duplication and measured minimal changes in code
size. ("size" on Darwin seems to round the text size up to the nearest
page boundary, so I can only say that any code size increase was less than
one 4k page.) Radar 7421267.
llvm-svn: 89814
way for each TargetJITInfo subclass to allocate its own stubs. This
means stubs aren't as exactly-sized anymore, but it lets us get rid of
TargetJITInfo::emitFunctionStubAtAddr(), which lets ARM and PPC
support the eager JIT, fixing http://llvm.org/PR4816.
* Rename the JITEmitter's stub creation functions to describe the kind
of stub they create. So far, all of them create lazy-compilation
stubs, but they sometimes get used when far-call stubs are needed.
Fixing http://llvm.org/PR5201 will involve fixing this.
llvm-svn: 89715
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
llvm-svn: 89711
tell debug info which base register to use to reference a frame index on a
per-index basis. This is useful, for example, in the presence of dynamic
stack realignment when local variables are indexed via the stack pointer and
stack-based arguments via the frame pointer.
llvm-svn: 89620
contents of the block to be duplicated. Use this for ARM Cortex A8/9 to
be more aggressive tail duplicating indirect branches, since it makes it
much more likely that they will be predicted in the branch target buffer.
Testcase coming soon.
llvm-svn: 89187
This is probably not confined to *just* these two things.
Anyway, the llvm-gcc front-end may look up the structure layout information for
an abstract type. That information will be stored into a table with the FE's
TD. Instruction combine can come along and also ask for information on that
abstract type, but for a separate TD (the one associated with the pass manager).
After the type is refined, the old structure layout information in the pass
manager's TD file is out of date. If a new type is allocated in the same space
as the old-unrefined type, then the structure type information in the pass
manager's TD file will be wrong, but won't know it.
Fix this by making the TD's structure type information an abstract type user.
llvm-svn: 89176
Provide special isLoadFromStackSlotPostFE and isStoreToStackSlotPostFE
interfaces to explicitly request checking for post-frame ptr elimination
operands. This uses a heuristic so it isn't reliable for correctness.
llvm-svn: 87047
machine instruction loads or stores from/to a stack slot. Unlike
isLoadFromStackSlot and isStoreFromStackSlot, the instruction may be
something other than a pure load/store (e.g. it may be an arithmetic
operation with a memory operand). This helps AsmPrinter determine when
to print a spill/reload comment.
This is only a hint since we may not be able to figure this out in all
cases. As such, it should not be relied upon for correctness.
Implement for X86. Return false by default for other architectures.
llvm-svn: 87026
datatypes on a given CPU. This is intended to allow instcombine and other
transformations to avoid converting big sequences of operations to an
inconvenient width, and will help clean up after SRoA. See also "Adding
legal integer sizes to TargetData" on Feb 1, 2009 on llvmdev, and PR3451.
Comments welcome.
llvm-svn: 86370
unfolding loads for hoisting. getOpcodeAfterMemoryUnfold returns the
opcode of the original operation without the load, not the load
itself, MachineLICM needs to know the operand index in order to get
the correct register class. Extend getOpcodeAfterMemoryUnfold to
return this information.
llvm-svn: 85622
bunch of associated comments, because it doesn't have anything to do
with DAGs or scheduling. This is another step in decoupling MachineInstr
emitting from scheduling.
llvm-svn: 85517
bootstrapping. It's not safe to leave identity subreg_to_reg and insert_subreg
around.
- Relax register scavenging to allow use of partially "not-live" registers. It's
common for targets to operate on registers where the top bits are undef. e.g.
s0 =
d0 = insert_subreg d0<undef>, s0, 1
...
= d0
When the insert_subreg is eliminated by the coalescer, the scavenger used to
complain. The previous fix was to keep to insert_subreg around. But that's
brittle and it's overly conservative when we want to use the scavenger to
allocate registers. It's actually legal and desirable for other instructions
to use the "undef" part of d0. e.g.
s0 =
d0 = insert_subreg d0<undef>, s0, 1
...
s1 =
= s1
= d0
We probably need add a "partial-undef" marker on machine operand so the
machine verifier would not complain.
llvm-svn: 85091
appropriate restore location for the spill as well as perform the actual
save and restore.
The Thumb1 target uses this to make sure R12 is not clobbered while a spilled
scavenger register is live there.
llvm-svn: 84554
bootstrap of FSF-style PPC, so there is some
reason to believe the original bug (which was
never analyzed) has been fixed, probably by
82266.
llvm-svn: 83871
is trivially rematerializable and integrate it into
TargetInstrInfo::isTriviallyReMaterializable. This way, all places that
need to know whether an instruction is rematerializable will get the
same answer.
This enables the useful parts of the aggressive-remat option by
default -- using AliasAnalysis to determine whether a memory location
is invariant, and removes the questionable parts -- rematting operations
with virtual register inputs that may not be live everywhere.
llvm-svn: 83687
implementations with a new MachineInstr::isInvariantLoad, which uses
MachineMemOperands and is target-independent. This brings MachineLICM
and other functionality to targets which previously lacked an
isInvariantLoad implementation.
llvm-svn: 83475
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
llvm-svn: 83467
spill slot. When frame references are via the frame pointer, they will be
negative, but Thumb1 load/store instructions only allow positive immediate
offsets. Instead, Thumb1 will spill to R12.
llvm-svn: 83336
set, these flags indicate the instructions source / def operands have special
register allocation requirement that are not captured in their register classes.
Post-allocation passes (e.g. post-alloc scheduler) should not change their
allocations. e.g. ARM::LDRD require the two definitions to be allocated
even / odd register pair.
llvm-svn: 83196
unused DECLARE instruction.
KILL is not yet used anywhere, it will replace TargetInstrInfo::IMPLICIT_DEF
in the places where IMPLICIT_DEF is just used to alter liveness of physical
registers.
llvm-svn: 83006
For the AAPCS ABI, SP must always be 4-byte aligned, and at any "public
interface" it must be 8-byte aligned. For the older ARM APCS ABI, the stack
alignment is just always 4 bytes. For X86, we currently align SP at
entry to a function (e.g., to 16 bytes for Darwin), but no stack alignment
is needed at other times, such as for a leaf function.
After discussing this with Dan, I decided to go with the approach of adding
a new "TransientStackAlignment" field to TargetFrameInfo. This value
specifies the stack alignment that must be maintained even in between calls.
It defaults to 1 except for ARM, where it is 4. (Some other targets may
also want to set this if they have similar stack requirements. It's not
currently required for PPC because it sets targetHandlesStackFrameRounding
and handles the alignment in target-specific code.) The existing StackAlignment
value specifies the alignment upon entry to a function, which is how we've
been using it anyway.
llvm-svn: 82767
feature, either build the JIT in debug mode to enable it by default or pass
-jit-emit-debug to lli.
Right now, the only debug information that this communicates to GDB is call
frame information, since it's already being generated to support exceptions in
the JIT. Eventually, when DWARF generation isn't tied so tightly to AsmPrinter,
it will be easy to push that information to GDB through this interface.
Here's a step-by-step breakdown of how the feature works:
- The JIT generates the machine code and DWARF call frame info
(.eh_frame/.debug_frame) for a function into memory.
- The JIT copies that info into an in-memory ELF file with a symbol for the
function.
- The JIT creates a code entry pointing to the ELF buffer and adds it to a
linked list hanging off of a global descriptor at a special symbol that GDB
knows about.
- The JIT calls a function marked noinline that GDB knows about and has put an
internal breakpoint in.
- GDB catches the breakpoint and reads the global descriptor to look for new
code.
- When sees there is new code, it reads the ELF from the inferior's memory and
adds it to itself as an object file.
- The JIT continues, and the next time we stop the program, we are able to
produce a proper backtrace.
Consider running the following program through the JIT:
#include <stdio.h>
void baz(short z) {
long w = z + 1;
printf("%d, %x\n", w, *((int*)NULL)); // SEGFAULT here
}
void bar(short y) {
int z = y + 1;
baz(z);
}
void foo(char x) {
short y = x + 1;
bar(y);
}
int main(int argc, char** argv) {
char x = 1;
foo(x);
}
Here is a backtrace before this patch:
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x2aaaabdfbd10 (LWP 25476)]
0x00002aaaabe7d1a8 in ?? ()
(gdb) bt
#0 0x00002aaaabe7d1a8 in ?? ()
#1 0x0000000000000003 in ?? ()
#2 0x0000000000000004 in ?? ()
#3 0x00032aaaabe7cfd0 in ?? ()
#4 0x00002aaaabe7d12c in ?? ()
#5 0x00022aaa00000003 in ?? ()
#6 0x00002aaaabe7d0aa in ?? ()
#7 0x01000002abe7cff0 in ?? ()
#8 0x00002aaaabe7d02c in ?? ()
#9 0x0100000000000001 in ?? ()
#10 0x00000000014388e0 in ?? ()
#11 0x00007fff00000001 in ?? ()
#12 0x0000000000b870a2 in llvm::JIT::runFunction (this=0x1405b70,
F=0x14024e0, ArgValues=@0x7fffffffe050)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/JIT/JIT.cpp:395
#13 0x0000000000baa4c5 in llvm::ExecutionEngine::runFunctionAsMain
(this=0x1405b70, Fn=0x14024e0, argv=@0x13f06f8, envp=0x7fffffffe3b0)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/ExecutionEngine.cpp:377
#14 0x00000000007ebd52 in main (argc=2, argv=0x7fffffffe398,
envp=0x7fffffffe3b0) at /home/rnk/llvm-gdb/tools/lli/lli.cpp:208
And a backtrace after this patch:
Program received signal SIGSEGV, Segmentation fault.
0x00002aaaabe7d1a8 in baz ()
(gdb) bt
#0 0x00002aaaabe7d1a8 in baz ()
#1 0x00002aaaabe7d12c in bar ()
#2 0x00002aaaabe7d0aa in foo ()
#3 0x00002aaaabe7d02c in main ()
#4 0x0000000000b870a2 in llvm::JIT::runFunction (this=0x1405b70,
F=0x14024e0, ArgValues=...)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/JIT/JIT.cpp:395
#5 0x0000000000baa4c5 in llvm::ExecutionEngine::runFunctionAsMain
(this=0x1405b70, Fn=0x14024e0, argv=..., envp=0x7fffffffe3c0)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/ExecutionEngine.cpp:377
#6 0x00000000007ebd52 in main (argc=2, argv=0x7fffffffe3a8,
envp=0x7fffffffe3c0) at /home/rnk/llvm-gdb/tools/lli/lli.cpp:208
llvm-svn: 82418
Eliminate the PersonalityPrefix/Suffix & NeedsIndirectEncoding
fields from MAI: they aren't part of the asm syntax, they are
related to the structure of the object file.
To replace their functionality, add a new
TLOF::getSymbolForDwarfGlobalReference method which asks targets
to decide how to reference a global from EH in a pc-relative way.
The default implementation just returns the symbol. The default
darwin implementation references the symbol through an indirect
$non_lazy_ptr stub. The bizarro x86-64 darwin specialization
handles the weird "foo@GOTPCREL+4" hack.
DwarfException.cpp now uses this to emit the reference to the
symbol in the right way, and this also eliminates another
horrible hack from DwarfException.cpp:
- if (strcmp(MAI->getPersonalitySuffix(), "+4@GOTPCREL"))
- O << "-" << MAI->getPCSymbol();
llvm-svn: 81991
full AsmPrinter, and change TargetRegistry to keep track
of registered MCInstPrinters.
llvm-mc is still linking in the entire
target foo to get the code emitter stuff, but this is an
important step in the right direction.
llvm-svn: 81754
that things like .word can be parsed as target specific. Moved parsing .word
out of AsmParser.cpp into X86AsmParser.cpp as it is 2 bytes on X86 and 4 bytes
for other targets that support the .word directive.
llvm-svn: 81461
all disassemblers.
Modified the MemoryObject to support 64-bit address
spaces, regardless of the LLVM process's address
width.
Modified the Target class to allow extraction of a
MCDisassembler.
llvm-svn: 81392
avoid reloads by reusing clobbered registers.
This was causing issues in 256.bzip2 when compiled with PIC for
a while (starting at r78217), though the problem has since been masked.
llvm-svn: 80872
encodings.
- Make some of the values emitted by the FDEs dependent upon the pointer
size. This is in line with how GCC does things. And it has the benefit of
working for Darwin in 64-bit mode now.
llvm-svn: 80428
support unaligned mem access only for certain types. (Should it be size
instead?)
ARM v7 supports unaligned access for i16 and i32, some v6 variants support it
as well.
llvm-svn: 79127
libcall. Take advantage of this in the ARM backend to rectify broken
choice of CC when hard float is in effect. PIC16 may want to see if
it could be of use in MakePIC16Libcall, which works unchanged.
Patch by Sandeep!
llvm-svn: 79033
TargetAsmInfo. This eliminates a dependency on TargetMachine.h from
TargetRegistry.h, which technically was a layering violation.
- Clients probably can only sensibly pass in the same TargetAsmInfo as the
TargetMachine has, but there are only limited clients of this API.
llvm-svn: 78928
x86_64-apple-darwin10.
--- Reverse-merging r78895 into '.':
U test/CodeGen/PowerPC/2008-12-12-EH.ll
U lib/Target/DarwinTargetAsmInfo.cpp
--- Reverse-merging r78892 into '.':
U include/llvm/Target/DarwinTargetAsmInfo.h
U lib/Target/X86/X86TargetAsmInfo.cpp
U lib/Target/X86/X86TargetAsmInfo.h
U lib/Target/ARM/ARMTargetAsmInfo.h
U lib/Target/ARM/ARMTargetMachine.cpp
U lib/Target/ARM/ARMTargetAsmInfo.cpp
U lib/Target/PowerPC/PPCTargetAsmInfo.cpp
U lib/Target/PowerPC/PPCTargetAsmInfo.h
U lib/Target/PowerPC/PPCTargetMachine.cpp
G lib/Target/DarwinTargetAsmInfo.cpp
llvm-svn: 78919
There have been a few times where I've wanted this but ended up leaving the
operand type unconstrained. It is easy to add this now and should help
catch errors in the future.
llvm-svn: 78849
pair instead of from a virtual method on TargetMachine. This cuts the final
ties of TargetAsmInfo to TargetMachine, meaning that MC can now use
TargetAsmInfo.
llvm-svn: 78802