We previously used the default expansion to SELECT_CC, which in turn would
expand to "LHI; BRC; LHI". In most cases it's better to use an IPM-based
sequence instead.
llvm-svn: 192784
This is really an extension of the current (shl (shr ...)) -> shl optimization.
The main difference is that certain upper bits must also not be demanded.
The motivating examples are the first two in the testcase, which occur
in llvmpipe output.
llvm-svn: 192783
GNU AS didn't like quotes in symbol names.
Error: junk at end of line, first unrecognized character is `"'
.def "@feat.00";
"@feat.00" = 1
Reproduced on Cygwin's 2.23.52.20130309 and mingw32's 2.20.1.20100303.
llvm-svn: 192775
Because of win32 mangling, we produce symbol and section names with
funny characters in them, most notably @ characters.
MC would choke on trying to parse its own assembly output. This patch addresses
that by:
- Making @ trigger quoting of symbol names
- Also quote section names in the same way
- Just parse section names like other identifiers (to allow for quotes)
- Don't assume @ signifies a symbol variant if it is in a string.
Differential Revision: http://llvm-reviews.chandlerc.com/D1945
llvm-svn: 192758
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.
Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.
On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.
Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.
The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.
Unit tests are updated so they don't depend on SD scheduling heuristics.
llvm-svn: 192750
- Type of index used in extract_vector_elt or insert_vector_elt supposes
to be TLI.getVectorIdxTy() which is pointer type on most targets. It'd
better to truncate (or zero-extend in case it's changed later) it to
mask element type to guarantee they are matching instead of asserting
that.
llvm-svn: 192722
- Lower signed division by constant powers-of-2 to target-independent
DAG operators instead of target-dependent ones to support them better
on targets where vector types are legal but shift operators on that
types are illegal. E.g., on AVX, PSRAW is only available on <8 x i16>
though <16 x i16> is a legal type.
llvm-svn: 192721
rdar:15221834 False AVX register dependencies cause 5x slowdown on
flops-5/6 and significant slowdown on several others.
This was blocking the switch to MI-Sched.
llvm-svn: 192669
through bitcast, ptrtoint, and inttoptr instructions. This is valid
only if the related instructions are in that same basic block, otherwise
we may reference variables that were not live accross basic blocks
resulting in undefined virtual registers.
The bug was exposed when both SDISel and FastISel were used within the same
function, i.e., one basic block is issued with FastISel and another with SDISel,
as demonstrated with the testcase.
<rdar://problem/15192473>
llvm-svn: 192636
a) x86-64 TLS has been documented
b) the code path should use movq for the correct relocation
to be generated.
I've also added a fixme for the test case that we should improve
the code generated, it should look something like is documented
in the tls abi document.
llvm-svn: 192631
Per original comment, the intention of this loop
is to go ahead and break the critical edge
(in order to sink this instruction) if there's
reason to believe doing so might "unblock" the
sinking of additional instructions that define
registers used by this one. The idea is that if
we have a few instructions to sink "together"
breaking the edge might be worthwhile.
This commit makes a few small changes
to help better realize this goal:
First, modify the loop to ignore registers
defined by this instruction. We don't
sink definitions of physical registers,
and sinking an SSA definition isn't
going to unblock an upstream instruction.
Second, ignore uses of physical registers.
Instructions that define physical registers are
rejected for sinking, and so moving this one
won't enable moving any defining instructions.
As an added bonus, while virtual register
use-def chains are generally small due
to SSA goodness, iteration over the uses
and definitions (used by hasOneNonDBGUse)
for physical registers like EFLAGS
can be rather expensive in practice.
(This is the original reason for looking at this)
Finally, to keep things simple continue
to only consider this trick for registers that
have a single use (via hasOneNonDBGUse),
but to avoid spuriously breaking critical edges
only do so if the definition resides
in the same MBB and therefore this one directly
blocks it from being sunk as well.
If sinking them together is meant to be,
let the iterative nature of this pass
sink the definition into this block first.
Update tests to accomodate this change,
add new testcase where sinking avoids pipeline stalls.
llvm-svn: 192608
When if converting something like:
true:
... = R0<kill>
false:
... = R0<kill>
then the instructions of the true block must not have a <kill> flag
anymore, as the instruction of the false block follow and do still read
the R0 value.
Specifically this patch determines the set of register live-in in the
false block (possibly after simulating the liveness changes of the
duplicated instructions). Each of these live-in registers mustn't be
killed.
llvm-svn: 192482
This should fix the buildbots.
Original commit message:
[DAGCombiner] Slice a big load in two loads when the element are next to each
other in memory and the target has paired load and performs post-isel loads
combining.
E.g., this optimization will transform something like this:
a = load i64* addr
b = trunc i64 a to i32
c = lshr i64 a, 32
d = trunc i64 c to i32
into:
b = load i32* addr1
d = load i32* addr2
Where addr1 = addr2 +/- sizeof(i32), if the target supports paired load and
performs post-isel loads combining.
One should overload TargetLowering::hasPairedLoad to provide this information.
The default is false.
<rdar://problem/14477220>
llvm-svn: 192476
This reverts r192454
Apparently FileCheck isn't as smart as I though and does not enforce a
topological order between variable defs+uses.
llvm-svn: 192472
other in memory and the target has paired load and performs post-isel loads
combining.
E.g., this optimization will transform something like this:
a = load i64* addr
b = trunc i64 a to i32
c = lshr i64 a, 32
d = trunc i64 c to i32
into:
b = load i32* addr1
d = load i32* addr2
Where addr1 = addr2 +/- sizeof(i32), if the target supports paired load and
performs post-isel loads combining.
One should overload TargetLowering::hasPairedLoad to provide this information.
The default is false.
<rdar://problem/14477220>
llvm-svn: 192471
For NVPTX, this fixes a crash where the emitImplicitDef implementation was expecting physical registers,
while NVPTX uses virtual registers (with a couple of exceptions). Now, the implicit def comment will be
emitted as a true PTX register name. Other targets can use this to customize the output of implicit def
comments.
Fixes PR17519
llvm-svn: 192444
When a ConstantExpr which uses a thread local is part of a PHI node
instruction, the insruction that replaces the ConstantExpr must
be inserted in the predecessor block, in front of the terminator instruction.
If the predecessor block has multiple successors, the edge is first split.
llvm-svn: 192432
We can't enable the verifier for tests with SI_IF and SI_ELSE, because
these instructions are always followed by a COPY which copies their
result to the next basic block. This violates the machine verifier's
rule that non-terminators can not folow terminators.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 192366
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192361
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192352
When we had a sequence like:
s1 = VLDRS [r0, 1], Q0<imp-def>
s3 = VLDRS [r0, 2], Q0<imp-use,kill>, Q0<imp-def>
s0 = VLDRS [r0, 0], Q0<imp-use,kill>, Q0<imp-def>
s2 = VLDRS [r0, 4], Q0<imp-use,kill>, Q0<imp-def>
we were gathering the {s0, s1} loads below the s3 load. This is fine,
but confused the verifier since now the s3 load had Q0<imp-use> with
no definition above it.
This should mark such uses <undef> as well. The liveness structure at
the beginning and end of the block is unaffected, and the true sN
definitions should prevent any dodgy reorderings being introduced
elsewhere.
rdar://problem/15124449
llvm-svn: 192344
Substantial SelectionDAG scheduling is going away soon, and is
interfering with Hao's attempts to implement LDn/STn instructions, so
I say we make the leap first.
There were a few reorderings (inevitably) which broke some tests. I
tried to replace them with CHECK-DAG variants mostly, but some too
complex for that to be useful and I just reordered them.
llvm-svn: 192282
from struct byval to registers.
We used to pass 0 which means the alignment of PtrVT. Even when the alignment
of the struct is smaller than 4, the LOADs would have alignment of 4, and
further optimizations could combine the LOADs into a ldm, which would
cause crash.
The fix is to pass the alignment of the struct byval.
rdar://problem/15144402
llvm-svn: 192126
The most likely case where this error happens is when the user specifies
too many register operands. Don't make it look like an internal LLVM bug
when we can see that the error is coming from an inline asm instruction.
For other instructions we keep the "ran out of registers" error.
llvm-svn: 192041
optimizeSelect folds (predicated) copy instructions, it must not ignore
the original register class of the operand when replacing the register
with the copies dest register.
llvm-svn: 191963
The jump doesn't really kill the registers, the following call does but
we never get back anyway.
This avoids some verify-machineinstrs problems when TAILJUMPs are
if-converted.
llvm-svn: 191962
This function-attribute modifies the callee-saved register list and function
epilogue (specifically the return instruction) so that a routine is suitable
for use as an interrupt-handler of the specified type without disrupting
user-mode applications.
rdar://problem/14207019
llvm-svn: 191766
This just adds the basics necessary for allocating the upper words to
virtual registers (move, load and store). The move support is parameterised
in a way that makes it easy to handle zero extensions, but the associated
zero-extend patterns are added by a later patch.
The easiest way of testing this seemed to be add a new "h" register
constraint for high words. I don't expect the constraint to be useful
in real inline asms, but it should work, so I didn't try to hide it
behind an option.
llvm-svn: 191739
We were completely ignoring the unorder/ordered attributes of condition
codes and also incorrectly lowering seto and setuo.
Reviewed-by: Vincent Lejeune<vljn at ovi.com>
llvm-svn: 191603
of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
llvm-svn: 191591
Remove the command line argument "struct-path-tbaa" since we should not depend
on command line argument to decide which format the IR file is using. Instead,
we check the first operand of the tbaa tag node, if it is a MDNode, we treat
it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
format.
When clang starts to use struct-path aware TBAA format no matter whether
struct-path-tbaa is no, and we can auto-upgrade existing bc files, the support
for scalar TBAA format can be dropped.
Existing testing cases are updated to use the struct-path aware TBAA format.
llvm-svn: 191538
The backend tries to use block operations like MVC, NC, OC and XC for
simple scalar operations. For correctness reasons, it rejects any case
in which the regions might partially overlap. However, for performance
reasons, it should also reject cases where the regions might be equal,
since the instruction might then not use the fast path.
This fixes a performance regression seen in bzip2. We may want to limit
the optimisation even more in future, or even remove it entirely, but I'll
try with this for now.
llvm-svn: 191525
The backend previously folded offsets into PC-relative addresses
whereever possible. That's the right thing to do when the address
can be used directly in a PC-relative memory reference (using things
like LRL). But if we have a register-based memory reference and need
to load the PC-relative address separately, it's better to use an anchor
point that could be shared with other accesses to the same area of the
variable.
Fixes a FIXME.
llvm-svn: 191524
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
llvm-svn: 191514
This change fixes the problem reported in pr17380 and re-add the dagcombine
transformation ensuring that the value types are always legal if the
transformation is triggered after Legalization took place.
Added the test case from pr17380.
llvm-svn: 191509
When generating code for shared libraries, even local calls may be
intercepted, so we need a nop after the call for the linker to fix up the
TOC. Test case adapted from the one provided in PR17354.
llvm-svn: 191440
Generally, it is desirable to distribute (a + b) * c to a*c + b*c for
ARM with VMLx forwarding, where a, b and c are vectors.
However, for (a + b)*(a + b), distribution will result in one extra
instruction.
With distribution:
x = a + b (add)
y = a * x (mul)
z = y + b * y (mla)
Without distribution:
x = a + b (add)
z = x * x (mul)
This patch checks if a mul is a square of add/sub. If yes, skip
distribution.
llvm-svn: 191410
(shl (zext (shr A, X)), X) => (zext (shl (shr A, X), X)).
The rule only triggers when there are no other uses of the
zext to avoid materializing more instructions.
This helps the DAGCombiner understand that the shl/shr
sequence can then be converted into an and instruction.
llvm-svn: 191393
PEI inserts a save/restore sequence for the link register, according to the
information it gets from the MachineRegisterInfo.
MachineRegisterInfo is populated by the VirtRegMap pass.
This pass was not aware of noreturn calls and was registering the definitions of
these calls the same way as regular operations.
Modify VirtRegPass so that it does not set the isPhysRegUsed information for
registers only defined by noreturn calls.
The rational is that a noreturn call is the "last instruction" of the program
(if it returns the behavior is undefined), so everything that is defined by it
cannot be used and will not interfere with anything else. Therefore, it is
pointless to account for then.
llvm-svn: 191349
This is being disabled because it is no longer needed for
performance. It is only used by postRAscheduler which is also planned
for removal, and it is implemented with an out-dated view of register
liveness. It consideres aliases instead of register units, assumes
valid kill flags, and assumes implicit uses on partial register
defs. Kill flags and implicit operands are error prone and impossible
to verify. We should gradually eliminate dependence on them in the
postRA phases.
Targets that still benefit from this should move to the MI
scheduler. If that doesn't solve the problem, then we should add a
hook to regalloc to optimize reload placement.
llvm-svn: 191348
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
llvm-svn: 191299
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
llvm-svn: 191263
Sometimes a copy from a vreg -> vreg sneaks into the middle of a terminator
sequence. It is safe to slice this into the stack protector success bb.
This fixes PR16979.
llvm-svn: 191260
The recursive nature of the address selection code can cause the stack to
explode if there is a long chain of GEPs. Convert the recursive bit into a
iterative method to avoid this.
<rdar://problem/12445434>
llvm-svn: 191252
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
llvm-svn: 191199
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
llvm-svn: 191191
Previously, the DAGISel function WalkChainUsers was spotting that it
had entered already-selected territory by whether a node was a
MachineNode (amongst other things). Since it's fairly common practice
to insert MachineNodes during ISelLowering, this was not the correct
check.
Looking around, it seems that other nodes get their NodeId set to -1
upon selection, so this makes sure the same thing happens to all
MachineNodes and uses that characteristic to determine whether we
should stop looking for a loop during selection.
This should fix PR15840.
llvm-svn: 191165