This fixes an assertion failure that was being triggered in
SelectionDAG::getZeroExtendInReg(), where it was trying to extend the <2xi32>
to i64 (which should have been <2xi64>).
Fixes: rdar://66016901
Differential Revision: https://reviews.llvm.org/D84884
When building code at -O0 We weren't falling back to DAG ISel correctly
when encountering alloca instructions with scalable vector types. This
is because the alloca has no operands that are scalable. I've fixed this by
adding a check in AArch64ISelLowering::fallBackToDAGISel for alloca
instructions with scalable types.
Differential Revision: https://reviews.llvm.org/D84746
I still think it's highly questionable that we have two intrinsics
with identical behavior and only vary by the name of the libcall used
if it happens to be lowered that way, but try to reduce the feature
delta between SDAG and GlobalISel for recently added intrinsics. I'm
not sure which opcode should be considered the canonical one, but
lower roundeven back to round.
In future, we'd like to use the perfect-shuffle mechanism to deal with these
shuffle permutations. For now, this improves performance by avoiding the
super-expensive const-pool load + tbl instruction.
Differential Revision: https://reviews.llvm.org/D84866
Port the wide immediate case from AArch64DAGToDAGISel::SelectAddrModeXRO.
If we have a wide immediate which can't be represented in an add, we can end up
with code like this:
```
mov x0, imm
add x1, base, x0
ldr x2, [x1, 0]
```
If we use the [base, xN] addressing mode instead, we can produce this:
```
mov x0, imm
ldr x2, [base, x0]
```
This saves 0.4% code size on 7zip at -O3, and gives a geomean code size
improvement of 0.1% on CTMark.
Differential Revision: https://reviews.llvm.org/D84784
I have added tests to:
CodeGen/AArch64/sve-intrinsics-int-arith.ll
for doing simple integer add operations on tuple types. Since these
tests introduced new warnings due to incorrect use of
getVectorNumElements() I have also fixed up these warnings in the
same patch. These fixes are:
1. In narrowExtractedVectorBinOp I have changed the code to bail out
early for scalable vector types, since we've not yet hit a case that
proves the optimisations are profitable for scalable vectors.
2. In DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS I have replaced
calls to getVectorNumElements with getVectorMinNumElements in cases
that work with scalable vectors. For the other cases I have added
asserts that the vector is not scalable because we should not be
using shuffle vectors and build vectors in such cases.
Differential revision: https://reviews.llvm.org/D84016
Previous patches fixed up all the warnings in this test:
llvm/test/CodeGen/AArch64/sve-sext-zext.ll
and this change simply checks that no new warnings are added in future.
Differential revision: https://reviews.llvm.org/D83205
I think these were added as a workaround for SelectionDAG lacking half
legalization support in the past. I think they should probably be
removed from the IR, but clang does still have a target control to
emit these instead of the native half fpext/fptrunc.
While deallocating the stackframe, the offset used to reload the
callee-saved registers was not pointing to the SVE callee-saves,
but rather to the whole SVE area.
+--------------+
| GRP callee |
| saves |
+--------------+ <- FP
| SVE callee |
| saves |
+--------------+ <- Should restore SVE callee saves from here
| SVE Spills |
| and Locals |
+--------------+ <- instead of from here.
| |
: :
| |
+--------------+ <- SP
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D84539
Instead of aligning the last callee-saved-register slot to the stack
alignment (16 bytes), just align the SVE callee-saved block. This also
simplifies the code that allocates space for the callee-saves.
This change is needed to make sure the offset to which the callee-saved
register is spilled, corresponds to the offset used for e.g. unwind call
frame instructions.
Reviewers: efriedma, paulwalker-arm, david-arm, rengolin
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84042
Fixed stack objects are preallocated and defined to be allocated before
any of the regular stack objects. These are normally used to model stack
arguments.
The AAPCS does not support passing SVE registers on the stack by value
(only by reference). The current layout also doesn't place them before
all stack objects, but rather before all SVE objects. Removing this
simplifies the code that emits the allocation/deallocation
around callee-saved registers (D84042).
This patch also removes all uses of fixedStack from from
framelayout-sve.mir, where this was used purely for testing purposes.
Reviewers: paulwalker-arm, efriedma, rengolin
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D84538
I have introduced a new TargetFrameLowering query function:
isStackIdSafeForLocalArea
that queries whether or not it is safe for objects of a given stack
id to be bundled into the local area. The default behaviour is to
always bundle regardless of the stack id, however for AArch64 this is
overriden so that it's only safe for fixed-size stack objects.
There is future work here to extend this algorithm for multiple local
areas so that SVE stack objects can be bundled together and accessed
from their own virtual base-pointer.
Differential Revision: https://reviews.llvm.org/D83859
Store Addr and Store Addr+8 are clusterable pair. They have memory(ctrl) dependency on different loads.
Current implementation will put these two stores into different group and miss to cluster them.
Reviewed By: evandro
Differential Revision: https://reviews.llvm.org/D84139
Very minor code size improvements (hits 8 times in Bullet at -O3), but still
something.
Also very minor NFC change to make sure we only search for a 0 constant when
selecting a store. Before, we'd do this for loads as well.
Differential Revision: https://reviews.llvm.org/D84573
We weren't performing this optimization on 16 and 32 bit stores. SDAG happily
does this though.
e.g. https://godbolt.org/z/cWocKr
This saves about 0.2% in code size on CTMark at -O3.
Differential Revision: https://reviews.llvm.org/D84568
dacf8d3 added support for most fcmp operations, but there are some extra
variations I hadn't considered: SelectionDAG supports float comparisons
that are neither ordered nor unordered. Add support for the missing
operations.
Differential Revision: https://reviews.llvm.org/D84460
It's sort of tricky to hit this in practice, but not impossible. I have
a synthetic C testcase if anyone is interested.
The implementation is identical to the equivalent NEON register copies.
Differential Revision: https://reviews.llvm.org/D84373
Summary: We do this already for output operands, but missed it for (non-tied) input operands.
Reviewers: arsenm, Petar.Avramovic
Reviewed By: arsenm
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, llvm-commits, kerbowa
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83763
This patch addresses two issues:
* Forces the availability of the base-pointer (x19) when the frame has
both scalable vectors and variable-length arrays. Otherwise it will
be expensive to access non-SVE locals.
* In presence of SVE stack objects, it will allocate the emergency
scavenging slot close to the SP, so that they can be accessed from
the SP or BP if available. If accessed from the frame-pointer, it will
otherwise need an extra register to access the scavenging slot because
of mixed scalable/non-scalable addressing modes.
Reviewers: efriedma, ostannard, cameron.mcinally, rengolin, david-arm
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D70174
This was happening because the BLR didn't have a use of the X0 arg register,
which would end up being re-used in high reg pressure situations.
The change also avoids hard coding the use of X0 for the sequence except to
copy the value for the call. ld64 should still be able to optimize it.
rdar://65438258
There are a few questionable things about this intrinsic and existing
DAG implementation. For some reason the intrinsic hardcodes the second
operand to be scalar-only i32, and SelectionDAG builder makes a
legalization decision based on whether the operand is constant.
The default calling convention needs to save/restore the SVE callee
saves according to the SVE PCS when the function takes or returns
scalable types, even when the `aarch64_sve_vector_pcs` CC is not
specified for the function.
Reviewers: efriedma, paulwalker-arm, david-arm, rengolin
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D84041
Summary:
Teach LLVM to recognize the above pattern, where the operands are
either signed or unsigned types.
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83777
This isn't a natively supported operation, so convert it to a
mask+compare.
In addition to the operation itself, fix up some surrounding stuff to
make the testcase work: we need concat_vectors on i1 vectors, we need
legalization of i1 vector truncates, and we need to fix up all the
relevant uses of getVectorNumElements().
Differential Revision: https://reviews.llvm.org/D83811
Its effect could be achieved by
`-stop-after`,`-print-after`,`-print-after-all`. But a few tests need to
print MIR after ISel which could not be done with
`-print-after`/`-stop-after` since isel pass does not have commandline name.
That's the reason `--print-machineinstrs` is downgraded to
`--print-after-isel` in this patch. `--print-after-isel` could be
removed after we switch to new pass manager since isel pass would have a
commandline text name to use `print-after` or equivalent switches.
The motivation of this patch is to reduce tests dependency on
would-be-deprecated feature.
Reviewed By: arsenm, dsanders
Differential Revision: https://reviews.llvm.org/D83275
It's useful for a debugger to be able to distinguish an @llvm.debugtrap
from a (noreturn) @llvm.trap, so this extends the existing Windows
behaviour to other platforms.
tryLatency compares two sched candidates. For the top zone it prefers
the one with lesser depth, but only if that depth is greater than the
total latency of the instructions we've already scheduled -- otherwise
its latency would be hidden and there would be no stall.
Unfortunately it only tests the depth of one of the candidates. This can
lead to situations where the TopDepthReduce heuristic does not kick in,
but a lower priority heuristic chooses the other candidate, whose depth
*is* greater than the already scheduled latency, which causes a stall.
The fix is to apply the heuristic if the depth of *either* candidate is
greater than the already scheduled latency.
All this also applies to the BotHeightReduce heuristic in the bottom
zone.
Differential Revision: https://reviews.llvm.org/D72392
Lower the operations to predicated variants. This is prep work
required for fixed length code generation but also fixes a bug
whereby these operations fail selection when "unpacked" vector
types (e.g. MVT::nxv2f32) are used.
This patch also adds the missing "unpacked" patterns for FMA.
Differential Revision: https://reviews.llvm.org/D83765
Summary:
This patch modifies IncrementMemoryAddress to use a vscale
when calculating the new address if the data type is scalable.
Also adds tablegen patterns which match an extract_subvector
of a legal predicate type with zip1/zip2 instructions
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: efriedma, david-arm
Subscribers: tschuett, hiraditya, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83137
The existing code already considered this case. Unfortunately a typo in
the condition prevents it from triggering. Also the existing code, had
it run, forgot to do the folding.
This fixes PR42876.
Differential Revision: https://reviews.llvm.org/D65802