- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
instructions, but it doesn't really understand live ranges, so the first
INSERT_SUBREG uses an implicitly defined register.
Fix it in LiveVariableAnalysis by adding the <undef> flag.
llvm-svn: 106333
basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
llvm-svn: 106299
LiveVariableAnalysis was a bit picky about a register only being redefined once,
but that really isn't necessary.
Here is an example of chained INSERT_SUBREGs that we can handle now:
68 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1028<kill>, 14
register: %reg1040 +[70,134:0)
76 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1029<kill>, 13
register: %reg1040 replace range with [70,78:1) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,134:0) 0@78-(134) 1@70-(78)
84 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1030<kill>, 12
register: %reg1040 replace range with [78,86:2) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,134:0) 0@86-(134) 1@70-(78) 2@78-(86)
92 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1031<kill>, 11
register: %reg1040 replace range with [86,94:3) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,94:3)[94,134:0) 0@94-(134) 1@70-(78) 2@78-(86) 3@86-(94)
rdar://problem/8096390
llvm-svn: 106152
will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
llvm-svn: 106066
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
llvm-svn: 105998
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
llvm-svn: 105997
replacing the overly conservative checks that I had introduced recently to
deal with correctness issues. This makes a pretty noticable difference
in our testcases where reg_sequences are used. I've updated one test to
check that we no longer emit the unnecessary subreg moves.
llvm-svn: 105991
symbols as declarations in the X86 backend. This would manifest
on darwin x86-32 as errors like this with -fvisibility=hidden:
symbol '__ZNSbIcED1Ev' can not be undefined in a subtraction expression
This fixes PR7353.
llvm-svn: 105954
i64 and f64 types, but now it also handle Neon vector types, so the f64 result
of VMOVDRR may need to be converted to a Neon type. Radar 8084742.
llvm-svn: 105845
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
llvm-svn: 105749
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
llvm-svn: 105453
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
llvm-svn: 105378