Demonstrate how to generate vadd/vfadd intrinsic functions
1. add -gen-riscv-vector-builtins for clang builtins.
2. add -gen-riscv-vector-builtin-codegen for clang codegen.
3. add -gen-riscv-vector-header for riscv_vector.h. It also generates
ifdef directives with extension checking, base on D94403.
4. add -gen-riscv-vector-generic-header for riscv_vector_generic.h.
Generate overloading version Header for generic api.
https://github.com/riscv/rvv-intrinsic-doc/blob/master/rvv-intrinsic-rfc.md#c11-generic-interface
5. update tblgen doc for riscv related options.
riscv_vector.td also defines some unused type transformers for vadd,
because I think it could demonstrate how tranfer type work and we need
them for the whole intrinsic functions implementation in the future.
Authored-by: Roger Ferrer Ibanez <rofirrim@gmail.com>
Co-Authored-by: Zakk Chen <zakk.chen@sifive.com>
Reviewed By: jrtc27, craig.topper, HsiangKai, Jim, Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D95016
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.
For example:
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E> ; index
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count
These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.
This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker and Cullen Rhodes.
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94708
This diff introduces --keep-undefined in llvm-objcopy/llvm-strip for Mach-O
which makes the tools preserve undefined symbols.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D97040
This is a minor patch that addresses concerns about lifetime in D94002.
We need to mention that what's written in LangRef isn't everything about lifetime.start/end
and its semantics depends on the stack coloring algorithm's pattern matching of a stack pointer.
If the stack coloring algorithm cannot conclude that a pointer is a stack-allocated object, the pointer is conservatively
considered as a non-stack one because stack coloring won't take this lifetime into account while assigning addresses.
A reference from alloca to lifetime.start/end is added as well.
Differential Revision: https://reviews.llvm.org/D98112
This is a basic How-To that describes:
- What Windows Itanium is.
- How to assemble a build environment.
Differential Revision: https://reviews.llvm.org/D89518
This is a basic How-To that describes:
- What Windows Itanium is.
- How to assemble a build environment.
Differential Revision: https://reviews.llvm.org/D89518
Clarify that the base type endianity is used when creating implicit
location storage.
Remove duplicate definition of the generic type.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D98137
In "DWARF Extensions For Heterogeneous Debugging" document that the
DWARF generic type has a target architecture defined endianity.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D98126
This patch adds a new metadata node, DIArgList, which contains a list of SSA
values. This node is in many ways similar in function to the existing
ValueAsMetadata node, with the difference being that it tracks a list instead of
a single value. Internally, it uses ValueAsMetadata to track the individual
values, but there is also a reasonable amount of DIArgList-specific
value-tracking logic on top of that. Similar to ValueAsMetadata, it is a special
case in parsing and printing due to the fact that it requires a function state
(as it may reference function-local values).
This patch should not result in any immediate functional change; it allows for
DIArgLists to be parsed and printed, but debug variable intrinsics do not yet
recognize them as a valid argument (outside of parsing).
Differential Revision: https://reviews.llvm.org/D88175
Rewrites test to use correct architecture triple; fixes incorrect
reference in SourceLevelDebugging doc; simplifies `spillReg` behaviour
so as to not be dependent on changes elsewhere in the patch stack.
This reverts commit d2000b45d033c06dc7973f59909a0ad12887ff51.
explicitly emitting retainRV or claimRV calls in the IR
This reapplies ed4718eccb12bd42214ca4fb17d196d49561c0c7, which was reverted
because it was causing a miscompile. The bug that was causing the miscompile
has been fixed in 75805dce5ff874676f3559c069fcd6737838f5c0.
Original commit message:
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This patch adds a new instruction that can represent variadic debug values,
DBG_VALUE_VAR. This patch alone covers the addition of the instruction and a set
of basic code changes in MachineInstr and a few adjacent areas, but does not
correctly handle variadic debug values outside of these areas, nor does it
generate them at any point.
The new instruction is similar to the existing DBG_VALUE instruction, with the
following differences: the operands are in a different order, any number of
values may be used in the instruction following the Variable and Expression
operands (these are referred to in code as “debug operands”) and are indexed
from 0 so that getDebugOperand(X) == getOperand(X+2), and the Expression in a
DBG_VALUE_VAR must use the DW_OP_LLVM_arg operator to pass arguments into the
expression.
The new DW_OP_LLVM_arg operator is only valid in expressions appearing in a
DBG_VALUE_VAR; it takes a single argument and pushes the debug operand at the
index given by the argument onto the Expression stack. For example the
sub-expression `DW_OP_LLVM_arg, 0` has the meaning “Push the debug operand at
index 0 onto the expression stack.”
Differential Revision: https://reviews.llvm.org/D82363
This patch adds a pipeline to support in-order CPUs such as ARM
Cortex-A55.
In-order pipeline implements a simplified version of Dispatch,
Scheduler and Execute stages as a single stage. Entry and Retire
stages are common for both in-order and out-of-order pipelines.
Differential Revision: https://reviews.llvm.org/D94928
The help text and documentation for the --discard-all option failed to
mention that the option also causes the removal of debug sections. This
change fixes both for both llvm-objcopy and llvm-strip.
Reviewed by: MaskRay
Differential Revision: https://reviews.llvm.org/D97662
This patch is an update to LangRef by describing lifetime intrinsics' behavior
by following the description of MIR's LIFETIME_START/LIFETIME_END markers
at StackColoring.cpp (eb44682d67/llvm/lib/CodeGen/StackColoring.cpp (L163)) and the discussion in llvm-dev.
In order to explicitly define the meaning of an object lifetime, I added 'Object Lifetime' subsection.
Reviewed By: nlopes
Differential Revision: https://reviews.llvm.org/D94002
See pr46990(https://bugs.llvm.org/show_bug.cgi?id=46990). LICM should not sink store instructions to loop exit blocks which cross coro.suspend intrinsics. This breaks semantic of coro.suspend intrinsic which return to caller directly. Also this leads to use-after-free if the coroutine is freed before control returns to the caller in multithread environment.
This patch disable promotion by check whether loop contains coro.suspend intrinsics.
This is a resubmit of D86190.
Disabling LICM for loops with coroutine suspension is a better option not only for correctness purpose but also for performance purpose.
In most cases LICM sinks memory operations. In the case of coroutine, sinking memory operation out of the loop does not improve performance since coroutien needs to get data from the frame anyway. In fact LICM would hurt coroutine performance since it adds more entries to the frame.
Differential Revision: https://reviews.llvm.org/D96928
This caused miscompiles of Chromium tests for iOS due clobbering of live
registers. See discussion on the code review for details.
> Background:
>
> This fixes a longstanding problem where llvm breaks ARC's autorelease
> optimization (see the link below) by separating calls from the marker
> instructions or retainRV/claimRV calls. The backend changes are in
> https://reviews.llvm.org/D92569.
>
> https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
>
> What this patch does to fix the problem:
>
> - The front-end adds operand bundle "clang.arc.attachedcall" to calls,
> which indicates the call is implicitly followed by a marker
> instruction and an implicit retainRV/claimRV call that consumes the
> call result. In addition, it emits a call to
> @llvm.objc.clang.arc.noop.use, which consumes the call result, to
> prevent the middle-end passes from changing the return type of the
> called function. This is currently done only when the target is arm64
> and the optimization level is higher than -O0.
>
> - ARC optimizer temporarily emits retainRV/claimRV calls after the calls
> with the operand bundle in the IR and removes the inserted calls after
> processing the function.
>
> - ARC contract pass emits retainRV/claimRV calls after the call with the
> operand bundle. It doesn't remove the operand bundle on the call since
> the backend needs it to emit the marker instruction. The retainRV and
> claimRV calls are emitted late in the pipeline to prevent optimization
> passes from transforming the IR in a way that makes it harder for the
> ARC middle-end passes to figure out the def-use relationship between
> the call and the retainRV/claimRV calls (which is the cause of
> PR31925).
>
> - The function inliner removes an autoreleaseRV call in the callee if
> nothing in the callee prevents it from being paired up with the
> retainRV/claimRV call in the caller. It then inserts a release call if
> claimRV is attached to the call since autoreleaseRV+claimRV is
> equivalent to a release. If it cannot find an autoreleaseRV call, it
> tries to transfer the operand bundle to a function call in the callee.
> This is important since the ARC optimizer can remove the autoreleaseRV
> returning the callee result, which makes it impossible to pair it up
> with the retainRV/claimRV call in the caller. If that fails, it simply
> emits a retain call in the IR if retainRV is attached to the call and
> does nothing if claimRV is attached to it.
>
> - SCCP refrains from replacing the return value of a call with a
> constant value if the call has the operand bundle. This ensures the
> call always has at least one user (the call to
> @llvm.objc.clang.arc.noop.use).
>
> - This patch also fixes a bug in replaceUsesOfNonProtoConstant where
> multiple operand bundles of the same kind were being added to a call.
>
> Future work:
>
> - Use the operand bundle on x86-64.
>
> - Fix the auto upgrader to convert call+retainRV/claimRV pairs into
> calls with the operand bundles.
>
> rdar://71443534
>
> Differential Revision: https://reviews.llvm.org/D92808
This reverts commit ed4718eccb12bd42214ca4fb17d196d49561c0c7.
Document the default for the XNACK and SRAMECC target features for code object V2-V3 and V4.
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D97598
And clarify in the "writing a pass" docs that both the legacy and new
PMs are being used for the codegen/optimization pipelines.
Reviewed By: ychen, asbirlea
Differential Revision: https://reviews.llvm.org/D97515
This document was originally introduced in ab4648504b2, and was reverted in
912bc4980e9 while I investigated a number of shpinx bot errors. This commit
reintroduces the document with fixes for those errors, as well as some
improvements to the wording and formatting.
For some build configurations, `check-all` calls lit multiple times to
run multiple lit test suites. Most recently, I've found this to be
true when configuring openmp as part of `LLVM_ENABLE_RUNTIMES`, but
this is not the first time.
If one test suite fails, none of the remaining test suites run, so you
cannot determine if your patch has broken them. It can then be
frustrating to try to determine which `check-` targets will run the
remaining tests without getting stuck on the failing tests.
When such cases arise, it is probably best to adjust the cmake
configuration for `check-all` to run all test suites as part of one
lit invocation. Because that fix will likely not be implemented and
land immediately, this patch introduces `--ignore-fail` to serve as a
workaround for developers trying to see test results until it does
land:
```
$ LIT_OPTS=--ignore-fail ninja check-all
```
One problem with `--ignore-fail` is that it makes it challenging to
detect test failures in a script, perhaps in CI. This problem should
serve as motivation to actually fix the cmake configuration instead of
continuing to use `--ignore-fail` indefinitely.
Reviewed By: jhenderson, thopre
Differential Revision: https://reviews.llvm.org/D96371
The current size of the llvm-project repository exceeds 1 GB. A shallow clone can save a lot of space and time. Some developers might not aware of this feature.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D97118
Enabled "bound_ctrl:1" and disabled "bound_ctrl:-1" syntax.
Corrected printer to output "bound_ctrl:1" instead of "bound_ctrl:0".
See bug 35397 for detailed issue description.
Differential Revision: https://reviews.llvm.org/D97048
In semi-automated environments, XFAILing or filtering out known regressions without actually committing changes or temporarily modifying the test suite can be quite useful.
Reviewed By: yln
Differential Revision: https://reviews.llvm.org/D96662
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
Rework template argument checking so that all arguments are type-checked
and cast if necessary.
Add a test.
Differential Revision: https://reviews.llvm.org/D96416
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
This adds a G_ASSERT_SEXT opcode, similar to G_ASSERT_ZEXT. This instruction
signifies that an operation was already sign extended from a smaller type.
This is useful for functions with sign-extended parameters.
E.g.
```
define void @foo(i16 signext %x) {
...
}
```
This adds verifier, regbankselect, and instruction selection support for
G_ASSERT_SEXT equivalent to G_ASSERT_ZEXT.
Differential Revision: https://reviews.llvm.org/D96890
With enough cores, the slowest tests can significantly change the total testing time if they happen to run late. With this change, a test suite can improve performance (for high-end systems) by listing just a few of the slowest tests up front.
Reviewed By: jdenny, jhenderson
Differential Revision: https://reviews.llvm.org/D96594
Some test systems do not use lit for test discovery but only for its
substitution and test selection because they use another way of managing
test collections, e.g. CTest. This forces those tests to be invoked with
lit --no-indirectly-run-check. When a mix of lit version is in use, it
requires to detect the availability of that option.
This commit provides a new config option standalone_tests to signal a
directory made of tests meant to run as standalone. When this option is
set, lit skips test discovery and the indirectly run check. It also adds
the missing documentation for --no-indirectly-run-check.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94766
1. Emit warnings for files without symbols.
2. Add -no_warning_for_no_symbols.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D95843
The few options are niche. They solved a problem which was traditionally solved
with more shell commands (`llvm-readelf -n` fetches the Build ID. Then
`ln` is used to hard link the file to a directory derived from the Build ID.)
Due to limitation, they are no longer used by Fuchsia and they don't appear to
be used elsewhere (checked with Google Search and Debian Code Search). So delete
them without a transition period.
Announcement: https://lists.llvm.org/pipermail/llvm-dev/2021-February/148446.html
Differential Revision: https://reviews.llvm.org/D96310
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
In the past, it was stated in D87994 that it is allowed to dereference a pointer that is partially undefined
if all of its possible representations fit into a dereferenceable range.
The motivation of the direction was to make a range analysis helpful for assuring dereferenceability.
Even if a range analysis concludes that its offset is within bounds, the offset could still be partially undefined; to utilize the range analysis, this relaxation was necessary.
https://groups.google.com/g/llvm-dev/c/2Qk4fOHUoAE/m/KcvYMEgOAgAJ has more context about this.
However, this is currently blocking another optimization, which is annotating the noundef attribute for library functions' arguments. D95122 is the patch.
Currently, there are quite a few library functions which cannot have noundef attached to its pointer argument because it can be transformed from load/store.
For example, MemCpyOpt can convert stores into memset:
```
store p, i32 0
store (p+1), i32 0 // Since currently it is allowed for store to have partially undefined pointer..
->
memset(p, 0, 8) // memset cannot guarantee that its ptr argument is noundef.
```
A bigger problem is that this makes unclear which library functions are allowed to have 'noundef' and which functions aren't (e.g., strlen).
This makes annotating noundef almost impossible for this kind of functions.
This patch proposes that all memory operations should have well-defined pointers.
For memset/memcpy, it is semantically equivalent to running a loop until the size is met (and branching on undef is UB), so the size is also updated to be well-defined.
Strictly speaking, this again violates the implication of dereferenceability from range analysis result.
However, I think this is okay for the following reasons:
1. It seems the existing analyses in the LLVM main repo does not have conflicting implementation with the new proposal.
`isDereferenceableAndAlignedPointer` works only when the GEP offset is constant, and `isDereferenceableAndAlignedInLoop` is also fine.
2. A possible miscompilation happens only when the source has a pointer with a *partially* undefined offset (it's okay with poison because there is no 'partially poison' value).
But, at least I'm not aware of a language using LLVM as backend that has a well-defined program while allowing partially undefined pointers.
There might be such a language that I'm not aware of, but improving the performance of the mainstream languages like C and Rust is more important IMHO.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D95238
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Before, the first mention of LLVM's license on the developer policy page stated
that LLVM's license is Apache 2. This patch makes that more accurate by
mentioning the LLVM exception this first time the LLVM license is discussed on
that page, i.e. Apache-2.0 with LLVM-exception.
Technically, the correct SPDX identifier for LLVM's license is 'Apache-2.0 WITH
LLVM-exception', but I thought that writing the 'WITH' in lower case made the
paragraph easier to read without reducing clarity.
Differential Revision: https://reviews.llvm.org/D96482
This is a follow up patch to D83136 adding the align attribute to `cmpxchg`.
See also D83465 for `atomicrmw`.
Differential Revision: https://reviews.llvm.org/D87443
This reverts commit 4a64d8fe392449b205e59031aad5424968cf7446.
Makes clang crash when buildling trivial iOS programs, see comment
after https://reviews.llvm.org/D92808#2551401
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a958b7af6130241996d9cfcecf559d4 without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
This reverts commit 3fe3946d9a958b7af6130241996d9cfcecf559d4.
The commit violates layering by including a header from Analysis in
lib/IR/AutoUpgrade.cpp.
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Based on the comments in the code, the idea is that AsmPrinter is
unable to produce entry value blocks of arbitrary length, such as
DW_OP_entry_value [DW_OP_reg5 DW_OP_lit1 DW_OP_plus]. But the way the
Verifier check is written it also disallows DW_OP_entry_value
[DW_OP_reg5] DW_OP_lit1 DW_OP_plus which seems to overshoot the
target.
Note that this patch does not change any of the safety guards in
LiveDebugValues — there is zero behavior change for clang. It just
allows us to legalize more complex expressions in future patches.
rdar://73907559
Differential Revision: https://reviews.llvm.org/D95990
On z/OS, other error messages are not matched correctly in lit tests.
```
EDC5121I Invalid argument.
EDC5111I Permission denied.
```
This patch adds a lit substitution to fix it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D95808
With the new PM imminent, bugpoint will diverge from opt, meaning it may
not reproduce a crash with the same arguments passed to opt. We need to
specify alternatives to bugpoint for reducing crashes.
I looked at the rest of the document to see if anything could be
improved. Major highlights:
* Run -Xclang -disable-llvm-passes instead of -O0 for skipping IR passes
* Mention the files that clang dumps on a crash
* Remove outdated reference to `delta` and plug `creduce` instead
* Mention llvm-reduce on top of bugpoint
* Mention --print-before-all --print-module-scope
* Mention sanitizers in addition to valgrind
* Mention opt-bisect for miscompiles
Reviewed By: fhahn, MaskRay
Differential Revision: https://reviews.llvm.org/D95578
So far, it was not specified what happens with the VGPRs of inactive
lanes when functions are called. This patch explicitely mentions that
the VGPR values of inactive lanes need to be preserved for all
registers.
This describes the current behavior, as only active lanes of registers
are saved to scratch. Also, as the multi-lane nature of VGPRs is not
properly modeled, we cannot determine the live VGPRs from inactive lanes
at calls. So we cannot save them, even if we intended to do so.
Differential Revision: https://reviews.llvm.org/D95610
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.
* It creates unnecessary dependency on libc. On the other hand, setting
rounding mode requires few instructions and could be made by compiler.
Sometimes standard C library even is not available, like in the case of
GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
call just sets rounding mode.
This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:
* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
returns non-zero value in the case of failure. In glibc 'fesetround'
reports failure if its argument is invalid or unsupported or if floating
point operations are unavailable on the hardware. Compiler usually knows
what core it generates code for and it can validate arguments in many
cases.
* Rounding mode is specified in 'fesetround' using constants like
'FE_TONEAREST', which are target dependent. It is inconvenient to work
with such constants at IR level.
C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.
This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.
Differential Revision: https://reviews.llvm.org/D74729
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
Add LLVM to the DW_CFA_LLVM_def_aspace_cfa and
DW_CFA_LLVM_def_aspace_cfa_sf DWARF extensions.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D95640
This adds a generic opcode which communicates that a type has already been
zero-extended from a narrower type.
This is intended to be similar to AssertZext in SelectionDAG.
For example,
```
%x_was_extended:_(s64) = G_ASSERT_ZEXT %x, 16
```
Signifies that the top 48 bits of %x are known to be 0.
This is useful in cases like this:
```
define i1 @zeroext_param(i8 zeroext %x) {
%cmp = icmp ult i8 %x, -20
ret i1 %cmp
}
```
In AArch64, `%x` must use a 32-bit register, which is then truncated to a 8-bit
value.
If we know that `%x` is already zero-ed out in the relevant high bits, we can
avoid the truncate.
Currently, in GISel, this looks like this:
```
_zeroext_param:
and w8, w0, #0xff ; We don't actually need this!
cmp w8, #236
cset w0, lo
ret
```
While SDAG does not produce the truncation, since it knows that it's
unnecessary:
```
_zeroext_param:
cmp w0, #236
cset w0, lo
ret
```
This patch
- Adds G_ASSERT_ZEXT
- Adds MIRBuilder support for it
- Adds MachineVerifier support for it
- Documents it
It also puts G_ASSERT_ZEXT into its own class of "hint instruction." (There
should be a G_ASSERT_SEXT in the future, maybe a G_ASSERT_ALIGN as well.)
This allows us to skip over hints in the legalizer etc. These can then later
be selected like COPY instructions or removed.
Differential Revision: https://reviews.llvm.org/D95564
... and similarly for some other cases. This is for consistency and to
make it easier to search for mentions of a particular architecture.
Differential Revision: https://reviews.llvm.org/D95453
Commit be9f322e8dc530a56f03356aad31fa9031b27e26 moved the list of workers from
slaves.py to workers.py, but the documentation in "How To Add A Builder" was
never updated and now references a non-existing file. This fixes that.
Reviewed By: gkistanova
Differential Revision: https://reviews.llvm.org/D94886
The documentation for contributing to LLVM currently links to the section
explaining how to submit a Phabricator review using the web interface.
I believe it would be better to link to the general page for using
Phabricator instead, which explains how to sign up with Phabricator,
and also how to submit patches using either the web interface or the
command-line.
I think this is worth changing because what currently *appears* to be our
preferred way of submitting a patch (through the web interface) isn't
actually what we prefer. Indeed, patches submitted from the command-line
have more meta-data available (such as which repository the patch targets),
and also can't suffer from missing context.
Differential Revision: https://reviews.llvm.org/D94929
This puts it in alphabetical order, matching the rest of the list.
Reviewed by: MaskRay, saugustine
Differential Revision: https://reviews.llvm.org/D94481
Currently LLVM is relying on ValueTracking's `isKnownNonZero` to attach `nonnull`, which can return true when the value is poison.
To make the semantics of `nonnull` consistent with the behavior of `isKnownNonZero`, this makes the semantics of `nonnull` to accept poison, and return poison if the input pointer isn't null.
This makes many transformations like below legal:
```
%p = gep inbounds %x, 1 ; % p is non-null pointer or poison
call void @f(%p) ; instcombine converts this to call void @f(nonnull %p)
```
Instead, this semantics makes propagation of `nonnull` to caller illegal.
The reason is that, passing poison to `nonnull` does not immediately raise UB anymore, so such program is still well defined, if the callee does not use the argument.
Having `noundef` attribute there re-allows this.
```
define void @f(i8* %p) { ; functionattr cannot mark %p nonnull here anymore
call void @g(i8* nonnull %p) ; .. because @g never raises UB if it never uses %p.
ret void
}
```
Another attribute that needs to be updated is `align`. This patch updates the semantics of align to accept poison as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90529
The attributes in the example are placed wrong:
They belong after the type, not after the parameter name.
Reviewed by: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D94683
RISC-V would like to use a struct of scalable vectors to return multiple
values from intrinsics. This woud also be needed for target independent
intrinsics like llvm.sadd.overflow.
This patch removes the existing restriction for this. I've modified
StructType::isSized to consider a struct containing scalable vectors
as unsized so the verifier won't allow loads/stores/allocas of these
structs.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94142
The ``llvm.experimental.noalias.scope.decl`` intrinsic identifies where a noalias
scope is declared. When the intrinsic is duplicated, a decision must
also be made about the scope: depending on the reason of the duplication,
the scope might need to be duplicated as well.
Reviewed By: nikic, jdoerfert
Differential Revision: https://reviews.llvm.org/D93039
New dwarf operator DW_OP_LLVM_implicit_pointer is introduced (present only in LLVM IR)
This operator is required as it is different than DWARF operator
DW_OP_implicit_pointer in representation and specification (number
and types of operands) and later can not be used as multiple level.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D84113
Generalize the documentation to include both, GDB and LLDB. Add a link to the interface
definition. Make a note on MCJIT's restriction to ELF. Mention the regression and bugfix
in LLDB as well as the jit-loader setting for macOS. Update the command line session to
use LLDB instead of GDB.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D90789
This is a small patch stating that a nocapture pointer cannot be returned.
Discussed in D93189.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D94386
Reorder the AMDGPUUage description of the memory model code sequences
for volatile so clear that it applies independent of the nontemporal
setting.
Differential Revision: https://reviews.llvm.org/D94358
Currently SimplifyCFG drops the debug locations of 'bonus' instructions.
Such instructions are moved before the first branch. The reason for the
current behavior is that this could lead to surprising debug stepping,
if the block that's folded is dead.
In case the first branch and the instructions to be folded have the same
debug location, this shouldn't be an issue and we can keep the debug
location.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D93662
Treat a non-atomic volatile load and store as a relaxed atomic at
system scope for the address spaces accessed. This will ensure all
relevant caches will be bypassed.
A volatile atomic is not changed and still only bypasses caches upto
the level specified by the SyncScope operand.
Differential Revision: https://reviews.llvm.org/D94214
Differential Revision: https://reviews.llvm.org/D93911
This first step adds the assert statement and supports it at top level
and in record definitions. Later steps will support it in class
definitions and multiclasses.
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are replaced
with the more appropriate `#if SANITIZER_GLIBC` (the headers are glibc
extensions, not specific to Linux (i.e. if we ever support GNU/kFreeBSD
or Hurd, the guards may automatically work)).
Several `#if SANITIZER_LINUX && !SANITIZER_ANDROID` guards are refined
with `#if SANITIZER_GLIBC` (the definitions are available on Linux glibc,
but may not be available on other libc (e.g. musl) implementations).
This patch makes `ninja asan cfi lsan msan stats tsan ubsan xray` build on a musl based Linux distribution (apk install musl-libintl)
Notes about disabled interceptors for musl:
* `SANITIZER_INTERCEPT_GLOB`: musl does not implement `GLOB_ALTDIRFUNC` (GNU extension)
* Some ioctl structs and functions operating on them.
* `SANITIZER_INTERCEPT___PRINTF_CHK`: `_FORTIFY_SOURCE` functions are GNU extension
* `SANITIZER_INTERCEPT___STRNDUP`: `dlsym(RTLD_NEXT, "__strndup")` errors so a diagnostic is formed. The diagnostic uses `write` which hasn't been intercepted => SIGSEGV
* `SANITIZER_INTERCEPT_*64`: the `_LARGEFILE64_SOURCE` functions are glibc specific. musl does something like `#define pread64 pread`
* Disabled `msg_iovlen msg_controllen cmsg_len` checks: musl is conforming while many implementations (Linux/FreeBSD/NetBSD/Solaris) are non-conforming. Since we pick the glibc definition, exclude the checks for musl (incompatible sizes but compatible offsets)
Pass through LIBCXX_HAS_MUSL_LIBC to make check-msan/check-tsan able to build libc++ (https://bugs.llvm.org/show_bug.cgi?id=48618).
Many sanitizer features are available now.
```
% ninja check-asan
(known issues:
* ASAN_OPTIONS=fast_unwind_on_malloc=0 odr-violations hangs
)
...
Testing Time: 53.69s
Unsupported : 185
Passed : 512
Expectedly Failed: 1
Failed : 12
% ninja check-ubsan check-ubsan-minimal check-memprof # all passed
% ninja check-cfi
( all cross-dso/)
...
Testing Time: 8.68s
Unsupported : 264
Passed : 80
Expectedly Failed: 8
Failed : 32
% ninja check-lsan
(With GetTls (D93972), 10 failures)
Testing Time: 4.09s
Unsupported: 7
Passed : 65
Failed : 22
% ninja check-msan
(Many are due to functions not marked unsupported.)
Testing Time: 23.09s
Unsupported : 6
Passed : 764
Expectedly Failed: 2
Failed : 58
% ninja check-tsan
Testing Time: 23.21s
Unsupported : 86
Passed : 295
Expectedly Failed: 1
Failed : 25
```
Used `ASAN_OPTIONS=verbosity=2` to verify there is no unneeded interceptor.
Partly based on Jari Ronkainen's https://reviews.llvm.org/D63785#1921014
Note: we need to place `_FILE_OFFSET_BITS` above `#include "sanitizer_platform.h"` to avoid `#define __USE_FILE_OFFSET64 1` in 32-bit ARM `features.h`
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D93848
This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
Currently, the compiler crashes in instruction selection of global
load/stores in gfx600 due to the lack of FLAT instructions. This patch
fix the crash by selecting MUBUF instructions for global load/stores
in gfx600.
Authored-by: Praveen Velliengiri <Praveen.Velliengiri@amd.com>
Reviewed by: t-tye
Differential revision: https://reviews.llvm.org/D92483
Update the documentation and add a test.
Build failed: Change SIZE_MAX to std::numeric_limits<int64_t>::max().
Differential Revision: https://reviews.llvm.org/D93419
The llvm.coro.end.async intrinsic allows to specify a function that is
to be called as the last action before returning. This function will be
inlined after coroutine splitting.
This function can contain a 'musttail' call to allow for guaranteed tail
calling as the last action.
Differential Revision: https://reviews.llvm.org/D93568
Change Summary:
* Clarify that release manager can commit without code owner approval
(but are still highly encouraged to get approval).
* Clarify that there is no official release criteria.
* Document what types of changes are allowed in each release phase.
This is update is based on the RFC submitted here:
http://lists.llvm.org/pipermail/llvm-dev/2020-May/141730.html
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D93493
Introduce CHECK modifiers that change the behavior of the CHECK
directive. Also add a LITERAL modifier for cases where matching could
end requiring escaping strings interpreted as regex where only
literal/fixed string matching is desired (making the CHECK's more
difficult to write/fragile and difficult to interpret).
This patch adds support for the fptoui.sat and fptosi.sat intrinsics,
which provide basically the same functionality as the existing fptoui
and fptosi instructions, but will saturate (or return 0 for NaN) on
values unrepresentable in the target type, instead of returning
poison. Related mailing list discussion can be found at:
https://groups.google.com/d/msg/llvm-dev/cgDFaBmCnDQ/CZAIMj4IBAAJ
The intrinsics have overloaded source and result type and support
vector operands:
i32 @llvm.fptoui.sat.i32.f32(float %f)
i100 @llvm.fptoui.sat.i100.f64(double %f)
<4 x i32> @llvm.fptoui.sat.v4i32.v4f16(half %f)
// etc
On the SelectionDAG layer two new ISD opcodes are added,
FP_TO_UINT_SAT and FP_TO_SINT_SAT. These opcodes have two operands
and one result. The second operand is an integer constant specifying
the scalar saturation width. The idea here is that initially the
second operand and the scalar width of the result type are the same,
but they may change during type legalization. For example:
i19 @llvm.fptsi.sat.i19.f32(float %f)
// builds
i19 fp_to_sint_sat f, 19
// type legalizes (through integer result promotion)
i32 fp_to_sint_sat f, 19
I went for this approach, because saturated conversion does not
compose well. There is no good way of "adjusting" a saturating
conversion to i32 into one to i19 short of saturating twice.
Specifying the saturation width separately allows directly saturating
to the correct width.
There are two baseline expansions for the fp_to_xint_sat opcodes. If
the integer bounds can be exactly represented in the float type and
fminnum/fmaxnum are legal, we can expand to something like:
f = fmaxnum f, FP(MIN)
f = fminnum f, FP(MAX)
i = fptoxi f
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
If the bounds cannot be exactly represented, we expand to something
like this instead:
i = fptoxi f
i = select f ult FP(MIN), MIN, i
i = select f ogt FP(MAX), MAX, i
i = select f uo f, 0, i # unnecessary if unsigned as 0 = MIN
It should be noted that this expansion assumes a non-trapping fptoxi.
Initial tests are for AArch64, x86_64 and ARM. This exercises all of
the scalar and vector legalization. ARM is included to test float
softening.
Original patch by @nikic and @ebevhan (based on D54696).
Differential Revision: https://reviews.llvm.org/D54749
Clang FE currently has hot/cold function attribute. But we only have
cold function attribute in LLVM IR.
This patch adds support of hot function attribute to LLVM IR. This
attribute will be used in setting function section prefix/suffix.
Currently .hot and .unlikely suffix only are added in PGO (Sample PGO)
compilation (through isFunctionHotInCallGraph and
isFunctionColdInCallGraph).
This patch changes the behavior. The new behavior is:
(1) If the user annotates a function as hot or isFunctionHotInCallGraph
is true, this function will be marked as hot. Otherwise,
(2) If the user annotates a function as cold or
isFunctionColdInCallGraph is true, this function will be marked as
cold.
The changes are:
(1) user annotated function attribute will used in setting function
section prefix/suffix.
(2) hot attribute overwrites profile count based hotness.
(3) profile count based hotness overwrite user annotated cold attribute.
The intention for these changes is to provide the user a way to mark
certain function as hot in cases where training input is hard to cover
all the hot functions.
Differential Revision: https://reviews.llvm.org/D92493
[amdgpu] Default to code object v3
v4 is not yet readily available, and doesn't appear
to be implemented in the back end
Reviewed By: t-tye, yaxunl
Differential Revision: https://reviews.llvm.org/D93258
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
The Linux/SystemZ platform is missing in the Getting Started guide
as platform on which LLVM is known to work.
Reviewed by: uweigand
Differential Revision: https://reviews.llvm.org/D93388
- Clarify documentation on initializing scratch.
- Rename compute_pgm_rsrc2 field for enabling scratch from
ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET to
ENABLE_PRIVATE_SEGMENT to match hardware definition.
Differential Revision: https://reviews.llvm.org/D93271
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D95195
[amdgpu] Default to code object v3
v4 is not yet readily available, and doesn't appear
to be implemented in the back end
Reviewed By: t-tye
Differential Revision: https://reviews.llvm.org/D93258
- Document which processors are supported by which runtimes.
- Add missing mappings for code object V2 note records
Differential Revision: https://reviews.llvm.org/D93016
This commit adds two new intrinsics.
- llvm.experimental.vector.insert: used to insert a vector into another
vector starting at a given index.
- llvm.experimental.vector.extract: used to extract a subvector from a
larger vector starting from a given index.
The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D91362
This patch documents the MIR syntax for a number of things relevant to
debugging information:
* Trailing 'debug-location' metadata that becomes a DebugLoc,
* Variable location metadata for stack slots,
* Syntax for DBG_VALUE metainstructions,
* Syntax for DBG_INSTR_REF, including trailing instruction numbers
attached to MIR instructions.
Differential Revision: https://reviews.llvm.org/D89337
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
This change supports context-sensitive profile data generation into llvm-profgen. With simultaneous sampling for LBR and call stack, we can identify leaf of LBR sample with calling context from stack sample . During the process of deriving fall through path from LBR entries, we unwind LBR by replaying all the calls and returns (including implicit calls/returns due to inlining) backwards on top of the sampled call stack. Then the state of call stack as we unwind through LBR always represents the calling context of current fall through path.
we have two types of virtual unwinding 1) LBR unwinding and 2) linear range unwinding.
Specifically, for each LBR entry which can be classified into call, return, regular branch, LBR unwinding will replay the operation by pushing, popping or switching leaf frame towards the call stack and since the initial call stack is most recently sampled, the replay should be in anti-execution order, i.e. for the regular case, pop the call stack when LBR is call, push frame on call stack when LBR is return. After each LBR processed, it also needs to align with the next LBR by going through instructions from previous LBR's target to current LBR's source, which we named linear unwinding. As instruction from linear range can come from different function by inlining, linear unwinding will do the range splitting and record counters through the range with same inline context.
With each fall through path from LBR unwinding, we aggregate each sample into counters by the calling context and eventually generate full context sensitive profile (without relying on inlining) to driver compiler's PGO/FDO.
A breakdown of noteworthy changes:
- Added `HybridSample` class as the abstraction perf sample including LBR stack and call stack
* Extended `PerfReader` to implement auto-detect whether input perf script output contains CS profile, then do the parsing. Multiple `HybridSample` are extracted
* Speed up by aggregating `HybridSample` into `AggregatedSamples`
* Added VirtualUnwinder that consumes aggregated `HybridSample` and implements unwinding of calls, returns, and linear path that contains implicit call/return from inlining. Ranges and branches counters are aggregated by the calling context. Here calling context is string type, each context is a pair of function name and callsite location info, the whole context is like `main:1 @ foo:2 @ bar`.
* Added PorfileGenerater that accumulates counters by ranges unfolding or branch target mapping, then generates context-sensitive function profile including function body, inferring callee's head sample, callsite target samples, eventually records into ProfileMap.
* Leveraged LLVM build-in(`SampleProfWriter`) writer to support different serialization format with no stop
- `getCanonicalFnName` for callee name and name from ELF section
- Added regression test for both unwinding and profile generation
Test Plan:
ninja & ninja check-llvm
Reviewed By: hoy, wenlei, wmi
Differential Revision: https://reviews.llvm.org/D89723
This patch adds a capability to SmallVector to decide a number of
inlined elements automatically. The policy is:
- A minimum of 1 inlined elements, with more as long as
sizeof(SmallVector<T>) <= 64.
- If sizeof(T) is "too big", then trigger a static_assert: this dodges
the more pathological cases
This is expected to systematically improve SmallVector use in the
LLVM codebase, which has historically been plagued by semi-arbitrary /
cargo culted N parameters, often leading to bad outcomes due to
excessive sizeof(SmallVector<T, N>). This default also makes
programming more convenient by avoiding edit/rebuild cycles due to
forgetting to type the N parameter.
Differential Revision: https://reviews.llvm.org/D92522
Revert "Delete llvm::is_trivially_copyable and CMake variable HAVE_STD_IS_TRIVIALLY_COPYABLE"
This reverts commit 4d4bd40b578d77b8c5bc349ded405fb58c333c78.
This reverts commit 557b00e0afb2dc1776f50948094ca8cc62d97be4.
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.
Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D89566
In this patch I have added support for a new loop hint called
vectorize.scalable.enable that says whether we should enable scalable
vectorization or not. If a user wants to instruct the compiler to
vectorize a loop with scalable vectors they can now do this as
follows:
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !2
...
!2 = !{!2, !3, !4}
!3 = !{!"llvm.loop.vectorize.width", i32 8}
!4 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
Setting the hint to false simply reverts the behaviour back to the
default, using fixed width vectors.
Differential Revision: https://reviews.llvm.org/D88962
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.
Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D89566
This does the same as `--mcpu=help` but was only
documented in the user guide.
* Added a test for both options.
* Corrected the single dash in `-mcpu=help` text.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D92305
llvm-symbolizer used to use the DIA SDK for symbolization on
Windows; this patch switches to using native symbolization, which was
implemented recently.
Users can still make the symbolizer use DIA by adding the `-dia` flag
in the LLVM_SYMBOLIZER_OPTS environment variable.
Differential Revision: https://reviews.llvm.org/D91814
- Document that the kernel descriptor defined is for code object V3.
Document that it also applies to earlier code object formats for CP.
- Document the deprecated bits in kernel descriptor.
Differential Revision: https://reviews.llvm.org/D91458
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
This change enables disassembling the text sections to build various address maps that are potentially used by the virtual unwinder. A switch `--show-disassembly` is being added to print the disassembly code.
Like the llvm-objdump tool, this change leverages existing LLVM components to parse and disassemble ELF binary files. So far X86 is supported.
Test Plan:
ninja check-llvm
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D89712
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
As a starter, this change sets up an entry point by introducing PerfReader to load profiled binaries and perf traces(including perf events and perf samples). For the event, here it parses the mmap2 events from perf script to build the loader snaps, which is used to retrieve the image load address in the subsequent perf tracing parsing.
As described in llvm-profgen.rst, the tool being built aims to support multiple input perf data (preprocessed by perf script) as well as multiple input binary images. It should also support dynamic reload/unload shared objects by leveraging the loader snaps being built by this change
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D89707
This is similar to the existing alloca and program address spaces (D37052)
and should be used when creating/accessing global variables.
We need this in our CHERI fork of LLVM to place all globals in address space 200.
This ensures that values are accessed using CHERI load/store instructions
instead of the normal MIPS/RISC-V ones.
The problem this is trying to fix is that most of the time the type of
globals is created using a simple PointerType::getUnqual() (or ::get() with
the default address-space value of 0). This does not work for us and we get
assertion/compilation/instruction selection failures whenever a new call
is added that uses the default value of zero.
In our fork we have removed the default parameter value of zero for most
address space arguments and use DL.getProgramAddressSpace() or
DL.getGlobalsAddressSpace() whenever possible. If this change is accepted,
I will upstream follow-up patches to use DL.getGlobalsAddressSpace() instead
of relying on the default value of 0 for PointerType::get(), etc.
This patch and the follow-up changes will not have any functional changes
for existing backends with the default globals address space of zero.
A follow-up commit will change the default globals address space for
AMDGPU to 1.
Reviewed By: dylanmckay
Differential Revision: https://reviews.llvm.org/D70947
This patch implements out of line atomics for LSE deployment
mechanism. Details how it works can be found in llvm/docs/Atomics.rst
Options -moutline-atomics and -mno-outline-atomics to enable and disable it
were added to clang driver. This is clang and llvm part of out-of-line atomics
interface, library part is already supported by libgcc. Compiler-rt
support is provided in separate patch.
Differential Revision: https://reviews.llvm.org/D91157
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
This patch introduces a new VPDef class, which can be used to
manage VPValues defined by recipes/VPInstructions.
The idea here is to mirror VPUser for values defined by a recipe. A
VPDef can produce either zero (e.g. a store recipe), one (most recipes)
or multiple (VPInterleaveRecipe) result VPValues.
To traverse the def-use chain from a VPDef to its users, one has to
traverse the users of all values defined by a VPDef.
VPValues now contain a pointer to their corresponding VPDef, if one
exists. To traverse the def-use chain upwards from a VPValue, we first
need to check if the VPValue is defined by a VPDef. If it does not have
a VPDef, this means we have a VPValue that is not directly defined
iniside the plan and we are done.
If we have a VPDef, it is defined inside the region by a recipe, which
is a VPUser, and the upwards def-use chain traversal continues by
traversing all its operands.
Note that we need to add an additional field to to VPVAlue to link them
to their defs. The space increase is going to be offset by being able to
remove the SubclassID field in future patches.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D90558
- In certain cases, a generic pointer could be assumed as a pointer to
the global memory space or other spaces. With a dedicated target hook
to query that address space from a given value, infer-address-space
pass could infer and propagate that to all its users.
Differential Revision: https://reviews.llvm.org/D91121
Describe in the BackEnd Developer's Guide. Instrument a few backends.
Remove an old unused timing facility. Add a null backend for timing
the parser.
Differential Revision: https://reviews.llvm.org/D91388
Clarify the semantics of GEP inbounds, in particular with regard
to what it means for wrapping. This cleans up some confusion on
when it is legal to apply nuw/nsw flags to various parts of the
GEP calculation.
Differential Revision: https://reviews.llvm.org/D90708
Use exact component name in add_ocaml_library.
Make expand_topologically compatible with new architecture.
Fix quoting in is_llvm_target_library.
Fix LLVMipo component name.
Write release note.
This patch adds a new !annotation metadata kind which can be used to
attach annotation strings to instructions.
It also adds a new pass that emits summary remarks per function with the
counts for each annotation kind.
The intended uses cases for this new metadata is annotating
'interesting' instructions and the remarks should provide additional
insight into transformations applied to a program.
To motivate this, consider these specific questions we would like to get answered:
* How many stores added for automatic variable initialization remain after optimizations? Where are they?
* How many runtime checks inserted by a frontend could be eliminated? Where are the ones that did not get eliminated?
Discussed on llvm-dev as part of 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
Reviewed By: thegameg, jdoerfert
Differential Revision: https://reviews.llvm.org/D91188
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Adding new paragraphs under "Introducing New Components" section to
check the different levels of support we have, to help introduction of
smaller set of changes without overwhelming new collaborators and
potentially losing the contribution.
Differential Revision: D91013
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR
This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.
This is a fairly simple change in itself, but leads to a number of other
required alterations.
- The hardware loop pass, if UsePhi is set, now generates loops of the
form:
%start = llvm.start.loop.iterations(%N)
loop:
%p = phi [%start], [%dec]
%dec = llvm.loop.decrement.reg(%p, 1)
%c = icmp ne %dec, 0
br %c, loop, exit
- For this a new llvm.start.loop.iterations intrinsic was added, identical
to llvm.set.loop.iterations but produces a value as seen above, gluing
the loop together more through def-use chains.
- This new instrinsic conceptually produces the same output as input,
which is taught to SCEV so that the checks in MVETailPredication are not
affected.
- Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
been left mostly as before. We should now more reliably be able to tell
that the t2DoLoopStart is correct without having to prove it, but
t2WhileLoopStart and tail-predicated loops will remain the same.
- And all the tests have been updated. There are a lot of them!
This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.
Differential Revision: https://reviews.llvm.org/D89881
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
As discussed in the mailing list [1-4], we need a separation of support
tiers when requiring support from the whole community versus a
sub-community. Essentially, if a sub-community is active enough and
takes maintenance into their own internal costs without affecting other
parts of the community's maintenance costs, then code that is not
immediately relevant to all parts (ie. not released, actively tested,
etc) can still find its way into the LLVM main repository without major
pain points.
The main benefit is to reduce the maintenance cost that those
sub-communities have outside of LLVM (for example, in duplicating common
code, applying the same patches on top of multiple user repositories or
downstream projects).
This document outlines the components and responsibilities of the
sub-communities with regards to maintenance costs and how they affect
the rest of the community.
It also adds an addendum on removal policies, which expand the existing
"new target removal" policy into something more generic, to encompass
any piece of code, scripts or documents in the repository.
[1] http://lists.llvm.org/pipermail/llvm-dev/2020-October/146249.html
[2] http://lists.llvm.org/pipermail/llvm-dev/2020-November/146335.html
[3] http://lists.llvm.org/pipermail/llvm-dev/2020-October/146138.html
[4] http://lists.llvm.org/pipermail/llvm-dev/2020-November/146298.html
The `llvm.coro.suspend.async` intrinsic takes a function pointer as its
argument that describes how-to restore the current continuation's
context from the context argument of the continuation function. Before
we assumed that the current context can be restored by loading from the
context arguments first pointer field (`first_arg->caller_context`).
This allows for defining suspension points that reuse the current
context for example.
Also:
llvm.coro.id.async lowering: Add llvm.coro.preprare.async intrinsic
Blocks inlining until after the async coroutine was split.
Also, change the async function pointer's context size position
struct async_function_pointer {
uint32_t relative_function_pointer_to_async_impl;
uint32_t context_size;
}
And make the position of the `async context` argument configurable. The
position is specified by the `llvm.coro.id.async` intrinsic.
rdar://70097093
Differential Revision: https://reviews.llvm.org/D90783
Update the Programmer's Reference document.
Add a test. Update a couple of tests with an improved error message.
Differential Revision: https://reviews.llvm.org/D90635
This patch adds the llvm.loop.mustprogress loop metadata. This is to be
added to loops where the frontend language requires that the loop makes
observable interactions with the environment. This is the loop-level
equivalent to the function attribute `mustprogress` defined in D86233.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D88464
This patch adds the `async` lowering of coroutines.
This will be used by the Swift frontend to lower async functions. In
contrast to the `retcon` lowering the frontend needs to be in control
over control-flow at suspend points as execution might be suspended at
these points.
This is very much work in progress and the implementation will change as
it evolves with the frontend. As such the documentation is lacking
detail as some of it might change.
rdar://70097093
Reapply with fix for memory sanitizer failure and sphinx failure.
Differential Revision: https://reviews.llvm.org/D90612
This patch adds the `async` lowering of coroutines.
This will be used by the Swift frontend to lower async functions. In
contrast to the `retcon` lowering the frontend needs to be in control
over control-flow at suspend points as execution might be suspended at
these points.
This is very much work in progress and the implementation will change as
it evolves with the frontend. As such the documentation is lacking
detail as some of it might change.
rdar://70097093
Differential Revision: https://reviews.llvm.org/D90612
This differentiates the Ryzen 4000/4300/4500/4700 series APUs that were
previously included in gfx909.
Differential Revision: https://reviews.llvm.org/D90419
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
This has already been done by @rjmccall in D76526 (49e5a97ec363), and
9514c048d89e. We should remove this from the docs.
Differential Revision: https://reviews.llvm.org/D90550
Only the aliases 'xzr' and 'sp' exist for the physical register x31.
The reason for wanting to remove the alias 'x31' is because it allows users
to write invalid asm that is not accepted by the GNU assembler.
Is there any objection to removing this alias? Or do we want to keep
this for compatibility with existing code that uses w31/x31?
Differential Revision: https://reviews.llvm.org/D90153
This patch mainly made the following changes:
1. Support AVX-VNNI instructions;
2. Introduce ExplicitVEXPrefix flag so that vpdpbusd/vpdpbusds/vpdpbusds/vpdpbusds instructions only use vex-encoding when user explicity add {vex} prefix.
Differential Revision: https://reviews.llvm.org/D89105
Make all of the "AMDGPU Machine Code GFX*" columns in the Memory Model
table a consistent width of 32-characters.
Best viewed with something like --word-diff
Differential Revision: https://reviews.llvm.org/D89977
Mostly NFC, but some changes are "bug fixes" rather than just e.g.
formatting changes or typo corrections.
- Fix typo "competing" -> "completing".
- Document why waintcnt is added to stores and not loads for
sequentially consistent ordering.
- Lowercase some mentions of `buffer_gl{0,1}_inv`.
- Make mentions of `*cnt(0)` consistently include the `(0)` count.
- Remove some mentions of instructions for incorrect address spaces. For
example, remove mention of `flat_load` from
`load atomic acquire workgroup global`.
- Re-flow some text to get all the target columns to fit in a
32-character wide column. Makes a future NFC patch to make these columns
both 32-character wide more straightforward.
Modified cherry-pick of patch by Tony Tye
Reviewed By: t-tye
Differential Revision: https://reviews.llvm.org/D89596
The neutral value is -0.0, not 0.0. This doesn't matter for "fast"
reductions due to nsz, but does matter for reassoc-only and seq
reductions.
Change tests to mostly use -0.0 where the neutral value was intended,
and add some additional test coverage in some places. Also update
LangRef to use the right value.
- AMDGPUUsage.rst: Correct AMD GPU DWARF address space table address
sizes which are in bits and not bytes.
- clang/.../Options.td: Improve description of AMD GPU options.
- Re-generate ClangComamndLineReference.rst from clang/.../Options.td .
Differential Revision: https://reviews.llvm.org/D90364
Add a few cross-references among TableGen documents.
Differential Revision: https://reviews.llvm.org/D90186
Add cross-references between TableGen documents.
If `null_pointer_is_valid` is present, `dereferenceable` does not imply
`nonnull`, make it clear.
Came up in D17993.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D89417
--section-details/-t is a GNU readelf option that produce
an output that is an alternative to --sections.
Differential revision: https://reviews.llvm.org/D89304
Allow overriding the default set of flags used to enable UBSan when
building llvm.
This can be used to test new checks or opt out of certain checks.
Differential Revision: https://reviews.llvm.org/D89439
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.
See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ
Differential Revision: https://reviews.llvm.org/D88861
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
In preparation for potential future concurrency, a FunctionPass
shouldn't modify anything at the module level that other FunctionPasses
can also modify.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89890
Recently [1], there was an upgrade to the version of buildbot being
deployed. The new setup will still work with old buildslaves but I
thought it might be a good idea to update the documentation to reflect,
that you now can use a newer buildbot version to when setting up your
worker (formely known as slave).
The upgrade from buildbot 0.8.5 to 2.8.5 went a long with a transition
to a new "worker" terminology [2] which is also reflected by this
change.
[1]: http://lists.llvm.org/pipermail/llvm-dev/2020-October/145629.html
[2]: http://docs.buildbot.net/0.9.12/manual/worker-transition.html
Reviewed By: gkistanova
Differential Revision: https://reviews.llvm.org/D89230
LLVM IR currently assumes some form of forward progress. This form is
not explicitly defined anywhere, and is the cause of miscompilations
in most languages that are not C++11 or later. This implicit forward progress
guarantee can not be opted out of on a function level nor on a loop
level. Languages such as C (C11 and later), C++ (pre-C++11), and Rust
have different forward progress requirements and this needs to be
evident in the IR.
Specifically, C11 and onwards (6.8.5, Paragraph 6) states that "An
iteration statement whose controlling expression is not a constant
expression, that performs no input/output operations, does not access
volatile objects, and performs no synchronization or atomic operations
in its body, controlling expression, or (in the case of for statement)
its expression-3, may be assumed by the implementation to terminate."
C++11 and onwards does not have this assumption, and instead assumes
that every thread must make progress as defined in [intro.progress] when
it comes to scheduling.
This was initially brought up in [0] as a bug, a solution was presented
in [1] which is the current workaround, and the predecessor to this
change was [2].
After defining a notion of forward progress for IR, there are two
options to address this:
1) Set the default to assuming Forward Progress and provide an opt-out for functions and an opt-in for loops.
2) Set the default to not assuming Forward Progress and provide an opt-in for functions, and an opt-in for loops.
Option 2) has been selected because only C++11 and onwards have a
forward progress requirement and it makes sense for them to opt-into it
via the defined `mustprogress` function attribute. The `mustprogress`
function attribute indicates that the function is required to make
forward progress as defined. This is sharply in contrast to the status
quo where this is implicitly assumed. In addition, `willreturn` implies `mustprogress`.
The background for why this definition was chosen is in [3] and for why
the option was chosen is in [4] and the corresponding thread(s). The implementation is in D85393, the
clang patch is in D86841, the LoopDeletion patch is in D86844, the
Inliner patches are in D87180 and D87262, and there will be more
incoming.
[0] https://bugs.llvm.org/show_bug.cgi?id=965#c25
[1] https://lists.llvm.org/pipermail/llvm-dev/2017-October/118558.html
[2] https://reviews.llvm.org/D65718
[3] https://lists.llvm.org/pipermail/llvm-dev/2020-September/144919.html
[4] https://lists.llvm.org/pipermail/llvm-dev/2020-September/145023.html
Reviewed By: jdoerfert, efriedma, nikic
Differential Revision: https://reviews.llvm.org/D86233
The langref description for llvm.test.set.loop.iterations.* were
missing the i1 return type.
Differential Revision: https://reviews.llvm.org/D89564
Patch by: Janek van Oirschot
This patch updates the Kaleidoscope and BuildingAJIT tutorial series (chapter
1-4) to OrcV2. Chapter 5 of the BuildingAJIT series is removed -- it will be
re-instated once we have in-tree support for out-of-process JITing.
This patch only updates the tutorial code, not the text. Patches welcome for
that, otherwise I will try to update it in a few weeks.
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.
This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.
The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89050
LLVM rejects DWARF operator DW_OP_over. This DWARF operator is needed
for Flang to support assumed rank array.
Summary:
Currently LLVM rejects DWARF operator DW_OP_over. Below error is
produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151, 20, 16, 48, 30, 35, 80, 34, 6)
warning: ignoring invalid debug info in over.ll
[..]
There were some parts missing in support of this operator, which are
now completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89208
The prefix given to --prefix will be added to GNU absolute paths when
used with --source option (source interleaved with the disassembly).
This matches GNU's objdump behavior.
GNU and C++17 rules for absolute paths are different.
Differential Revision: https://reviews.llvm.org/D85024
Fixes PR46368.
Differential Revision: https://reviews.llvm.org/D85024
This reverts commit eb9f7c28e5fe6d75fed3587023e17f2997c8024b.
Previously this was incorrectly handling linking of the contained
type, so this merges the fixes from D88973.
Add some minimal documentation for DILabel, originally introduced in
D45024. Update the name and semantics of the `variables:` field in the
documentation for `DISubprogram`; the field is now called
`retainedNodes:` and is a heterogeneous list of `DILocalVariable` and
`DILabel`.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89082
Following up on the discussion within the group during the roundtable at
the 2020 LLVM Developers Meeting, this commit adds to the security docs:
* How long we expect acknowledging security reports will take
* The escalation path the reporter can follow if they get no response
A temporary line inviting reporters to directly follow the escalation
path while the mailing list is being setup is also added.
Differential Revision: https://reviews.llvm.org/D89068
Resigning from security group as Azul representative as I have left Azul. Previously communicated via email with security group.
Differential Revision: https://reviews.llvm.org/D88933
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
This patch adds support for DWARF attribute DW_AT_rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89141
This patch introduce files that just enough for lib/Target/CSKY to compile.
Notably a basic CSKYTargetMachine and CSKYTargetInfo.
Differential Revision: https://reviews.llvm.org/D88466
This patch lets the bb_addr_map (renamed to __llvm_bb_addr_map) section use a special section type (SHT_LLVM_BB_ADDR_MAP) instead of SHT_PROGBITS. This would help parsers, dumpers and other tools to use the sh_type ELF field to identify this section rather than relying on string comparison on the section name.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D88199
Have the build work out of the box by forcing an LLD build.
That way, we don't require an external LTO-aware linker,
as we build one.
Also remove reference to the seemingly dead builder.
Differential Revision: https://reviews.llvm.org/D88990
The section on SmallVector has a note about preferring SmallVectorImpl
for APIs but doesn't mention ArrayRef. Although ArrayRef is discussed
elsewhere, let's re-emphasize here.
Differential Revision: https://reviews.llvm.org/D49881
Motivated by D88183, this seeks to clarify the current loop nomenclature with added illustrations, examples for possibly unexpected situations (infinite loops not part of the "parent" loop, logical loops sharing the same header, ...), and clarification on what other sources may consider a loop. The current document also has multiple errors that are fixed here.
Some selected errors:
* Loops a defined as strongly-connected components. A component a partition of all nodes, i.e. a subloop can never be a component. That is, the document as it currently is only covers top-level loops, even it also uses the term SCC for subloops.
* "a block can be the header of two separate loops at the same time" (it is considered a single loop by LoopInfo)
* "execute before some interesting event happens" (some interesting event is not well-defined)
Reviewed By: baziotis, Whitney
Differential Revision: https://reviews.llvm.org/D88408