1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/CodeGen/MachineBasicBlock.cpp

1585 lines
54 KiB
C++
Raw Normal View History

//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
Make MachineBasicBlock::updateTerminator to update DebugLoc as well Summary: Currently MachineBasicBlock::updateTerminator simply drops DebugLoc for newly created branch instructions, which may cause incorrect stepping and/or imprecise sample profile data. Below is an example: ``` 1 extern int bar(int x); 2 3 int foo(int *begin, int *end) { 4 int *i; 5 int ret = 0; 6 for ( 7 i = begin ; 8 i != end ; 9 i++) 10 { 11 ret += bar(*i); 12 } 13 return ret; 14 } ``` Below is a bitcode of 'foo' at the end of LLVM-IR level optimizations with -O3: ``` define i32 @foo(i32* readonly %begin, i32* readnone %end) !dbg !4 { entry: %cmp6 = icmp eq i32* %begin, %end, !dbg !9 br i1 %cmp6, label %for.end, label %for.body.preheader, !dbg !12 for.body.preheader: ; preds = %entry br label %for.body, !dbg !13 for.body: ; preds = %for.body.preheader, %for.body %ret.08 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ] %i.07 = phi i32* [ %incdec.ptr, %for.body ], [ %begin, %for.body.preheader ] %0 = load i32, i32* %i.07, align 4, !dbg !13, !tbaa !15 %call = tail call i32 @bar(i32 %0), !dbg !19 %add = add nsw i32 %call, %ret.08, !dbg !20 %incdec.ptr = getelementptr inbounds i32, i32* %i.07, i64 1, !dbg !21 %cmp = icmp eq i32* %incdec.ptr, %end, !dbg !9 br i1 %cmp, label %for.end.loopexit, label %for.body, !dbg !12, !llvm.loop !22 for.end.loopexit: ; preds = %for.body br label %for.end, !dbg !24 for.end: ; preds = %for.end.loopexit, %entry %ret.0.lcssa = phi i32 [ 0, %entry ], [ %add, %for.end.loopexit ] ret i32 %ret.0.lcssa, !dbg !24 } ``` where ``` !12 = !DILocation(line: 6, column: 3, scope: !11) ``` . As you can see, the terminator of 'entry' block, which is a loop control branch, has a DebugLoc of line 6, column 3. Howerver, after the execution of 'MachineBlock::updateTerminator' function, which is triggered by MachineSinking pass, the DebugLoc info is dropped as below (see there's no debug-location for JNE_1): ``` bb.0.entry: successors: %bb.4(0x30000000), %bb.1.for.body.preheader(0x50000000) liveins: %rdi, %rsi %6 = COPY %rsi %5 = COPY %rdi %8 = SUB64rr %5, %6, implicit-def %eflags, debug-location !9 JNE_1 %bb.1.for.body.preheader, implicit %eflags ``` This patch addresses this issue and make newly created branch instructions to keep debug-location info. Reviewers: aprantl, MatzeB, craig.topper, qcolombet Reviewed By: qcolombet Subscribers: qcolombet, llvm-commits Differential Revision: https://reviews.llvm.org/D29596 llvm-svn: 294976
2017-02-13 19:15:31 +01:00
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;
[Modules] Make Support/Debug.h modular. This requires it to not change behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
2014-04-22 00:55:11 +02:00
#define DEBUG_TYPE "codegen"
static cl::opt<bool> PrintSlotIndexes(
"print-slotindexes",
cl::desc("When printing machine IR, annotate instructions and blocks with "
"SlotIndexes when available"),
cl::init(true), cl::Hidden);
MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
: BB(B), Number(-1), xParent(&MF) {
Insts.Parent = this;
if (B)
IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
}
MachineBasicBlock::~MachineBasicBlock() {
}
/// Return the MCSymbol for this basic block.
MCSymbol *MachineBasicBlock::getSymbol() const {
if (!CachedMCSymbol) {
const MachineFunction *MF = getParent();
MCContext &Ctx = MF->getContext();
// We emit a non-temporary symbol -- with a descriptive name -- if it begins
// a section (with basic block sections). Otherwise we fall back to use temp
// label.
if (MF->hasBBSections() && isBeginSection()) {
SmallString<5> Suffix;
if (SectionID == MBBSectionID::ColdSectionID) {
Suffix += ".cold";
} else if (SectionID == MBBSectionID::ExceptionSectionID) {
Suffix += ".eh";
} else {
// For symbols that represent basic block sections, we add ".__part." to
// allow tools like symbolizers to know that this represents a part of
// the original function.
Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
}
CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
} else {
const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
Twine(MF->getFunctionNumber()) +
"_" + Twine(getNumber()));
}
}
return CachedMCSymbol;
}
MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
if (!CachedEHCatchretMCSymbol) {
const MachineFunction *MF = getParent();
SmallString<128> SymbolName;
raw_svector_ostream(SymbolName)
<< "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
}
return CachedEHCatchretMCSymbol;
}
MCSymbol *MachineBasicBlock::getEndSymbol() const {
if (!CachedEndMCSymbol) {
const MachineFunction *MF = getParent();
MCContext &Ctx = MF->getContext();
auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
Twine(MF->getFunctionNumber()) +
"_" + Twine(getNumber()));
}
return CachedEndMCSymbol;
}
2009-08-23 02:35:30 +02:00
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
MBB.print(OS);
return OS;
}
Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
}
/// When an MBB is added to an MF, we need to update the parent pointer of the
/// MBB, the MBB numbering, and any instructions in the MBB to be on the right
/// operand list for registers.
///
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
MachineBasicBlock *N) {
MachineFunction &MF = *N->getParent();
N->Number = MF.addToMBBNumbering(N);
// Make sure the instructions have their operands in the reginfo lists.
MachineRegisterInfo &RegInfo = MF.getRegInfo();
for (MachineBasicBlock::instr_iterator
I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
I->AddRegOperandsToUseLists(RegInfo);
}
void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
}
/// When we add an instruction to a basic block list, we update its parent
/// pointer and add its operands from reg use/def lists if appropriate.
2009-08-23 02:35:30 +02:00
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
assert(!N->getParent() && "machine instruction already in a basic block");
N->setParent(Parent);
2011-06-16 20:01:17 +02:00
// Add the instruction's register operands to their corresponding
// use/def lists.
MachineFunction *MF = Parent->getParent();
N->AddRegOperandsToUseLists(MF->getRegInfo());
MF->handleInsertion(*N);
}
/// When we remove an instruction from a basic block list, we update its parent
/// pointer and remove its operands from reg use/def lists if appropriate.
2009-08-23 02:35:30 +02:00
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
assert(N->getParent() && "machine instruction not in a basic block");
// Remove from the use/def lists.
if (MachineFunction *MF = N->getMF()) {
MF->handleRemoval(*N);
N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
}
2011-06-16 20:01:17 +02:00
N->setParent(nullptr);
}
/// When moving a range of instructions from one MBB list to another, we need to
/// update the parent pointers and the use/def lists.
void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
instr_iterator First,
instr_iterator Last) {
assert(Parent->getParent() == FromList.Parent->getParent() &&
"cannot transfer MachineInstrs between MachineFunctions");
// If it's within the same BB, there's nothing to do.
if (this == &FromList)
return;
assert(Parent != FromList.Parent && "Two lists have the same parent?");
// If splicing between two blocks within the same function, just update the
// parent pointers.
for (; First != Last; ++First)
First->setParent(Parent);
}
void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
assert(!MI->getParent() && "MI is still in a block!");
Parent->getParent()->DeleteMachineInstr(MI);
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
instr_iterator I = instr_begin(), E = instr_end();
while (I != E && I->isPHI())
++I;
assert((I == E || !I->isInsideBundle()) &&
"First non-phi MI cannot be inside a bundle!");
return I;
}
MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
iterator E = end();
while (I != E && (I->isPHI() || I->isPosition() ||
TII->isBasicBlockPrologue(*I)))
++I;
// FIXME: This needs to change if we wish to bundle labels
// inside the bundle.
assert((I == E || !I->isInsideBundle()) &&
"First non-phi / non-label instruction is inside a bundle!");
return I;
}
MachineBasicBlock::iterator
MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
iterator E = end();
while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
TII->isBasicBlockPrologue(*I)))
++I;
// FIXME: This needs to change if we wish to bundle labels / dbg_values
// inside the bundle.
assert((I == E || !I->isInsideBundle()) &&
"First non-phi / non-label / non-debug "
"instruction is inside a bundle!");
return I;
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
iterator B = begin(), E = end(), I = E;
while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
; /*noop */
while (I != E && !I->isTerminator())
++I;
return I;
}
MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
instr_iterator B = instr_begin(), E = instr_end(), I = E;
while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
; /*noop */
while (I != E && !I->isTerminator())
++I;
return I;
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
// Skip over begin-of-block dbg_value instructions.
return skipDebugInstructionsForward(begin(), end());
}
MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
// Skip over end-of-block dbg_value instructions.
instr_iterator B = instr_begin(), I = instr_end();
while (I != B) {
--I;
// Return instruction that starts a bundle.
if (I->isDebugInstr() || I->isInsideBundle())
continue;
return I;
}
// The block is all debug values.
return end();
}
bool MachineBasicBlock::hasEHPadSuccessor() const {
for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
if ((*I)->isEHPad())
return true;
return false;
}
bool MachineBasicBlock::isEntryBlock() const {
return getParent()->begin() == getIterator();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
print(dbgs());
}
#endif
bool MachineBasicBlock::mayHaveInlineAsmBr() const {
for (const MachineBasicBlock *Succ : successors()) {
if (Succ->isInlineAsmBrIndirectTarget())
return true;
}
return false;
}
bool MachineBasicBlock::isLegalToHoistInto() const {
if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
return false;
return true;
}
StringRef MachineBasicBlock::getName() const {
if (const BasicBlock *LBB = getBasicBlock())
return LBB->getName();
else
return StringRef("", 0);
}
/// Return a hopefully unique identifier for this block.
std::string MachineBasicBlock::getFullName() const {
std::string Name;
if (getParent())
Name = (getParent()->getName() + ":").str();
if (getBasicBlock())
Name += getBasicBlock()->getName();
else
Name += ("BB" + Twine(getNumber())).str();
return Name;
}
void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
bool IsStandalone) const {
const MachineFunction *MF = getParent();
2009-08-23 02:35:30 +02:00
if (!MF) {
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
<< " is null\n";
return;
}
const Function &F = MF->getFunction();
const Module *M = F.getParent();
ModuleSlotTracker MST(M);
MST.incorporateFunction(F);
print(OS, MST, Indexes, IsStandalone);
}
void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
const SlotIndexes *Indexes,
bool IsStandalone) const {
const MachineFunction *MF = getParent();
if (!MF) {
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
<< " is null\n";
return;
}
2004-09-05 20:39:20 +02:00
if (Indexes && PrintSlotIndexes)
OS << Indexes->getMBBStartIdx(this) << '\t';
printName(OS, PrintNameIr | PrintNameAttributes, &MST);
OS << ":\n";
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
const MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
bool HasLineAttributes = false;
// Print the preds of this block according to the CFG.
if (!pred_empty() && IsStandalone) {
if (Indexes) OS << '\t';
// Don't indent(2), align with previous line attributes.
OS << "; predecessors: ";
ListSeparator LS;
for (auto *Pred : predecessors())
OS << LS << printMBBReference(*Pred);
2009-08-23 02:35:30 +02:00
OS << '\n';
HasLineAttributes = true;
}
if (!succ_empty()) {
if (Indexes) OS << '\t';
// Print the successors
OS.indent(2) << "successors: ";
ListSeparator LS;
for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
OS << LS << printMBBReference(**I);
if (!Probs.empty())
OS << '('
<< format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
<< ')';
}
if (!Probs.empty() && IsStandalone) {
// Print human readable probabilities as comments.
OS << "; ";
ListSeparator LS;
for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
const BranchProbability &BP = getSuccProbability(I);
OS << LS << printMBBReference(**I) << '('
<< format("%.2f%%",
rint(((double)BP.getNumerator() / BP.getDenominator()) *
100.0 * 100.0) /
100.0)
<< ')';
}
}
OS << '\n';
HasLineAttributes = true;
}
if (!livein_empty() && MRI.tracksLiveness()) {
if (Indexes) OS << '\t';
OS.indent(2) << "liveins: ";
ListSeparator LS;
for (const auto &LI : liveins()) {
OS << LS << printReg(LI.PhysReg, TRI);
if (!LI.LaneMask.all())
OS << ":0x" << PrintLaneMask(LI.LaneMask);
}
HasLineAttributes = true;
}
if (HasLineAttributes)
OS << '\n';
bool IsInBundle = false;
for (const MachineInstr &MI : instrs()) {
if (Indexes && PrintSlotIndexes) {
if (Indexes->hasIndex(MI))
OS << Indexes->getInstructionIndex(MI);
OS << '\t';
}
if (IsInBundle && !MI.isInsideBundle()) {
OS.indent(2) << "}\n";
IsInBundle = false;
}
OS.indent(IsInBundle ? 4 : 2);
MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
/*AddNewLine=*/false, &TII);
if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
OS << " {";
IsInBundle = true;
}
OS << '\n';
2004-09-05 20:39:20 +02:00
}
if (IsInBundle)
OS.indent(2) << "}\n";
if (IrrLoopHeaderWeight && IsStandalone) {
if (Indexes) OS << '\t';
OS.indent(2) << "; Irreducible loop header weight: "
<< IrrLoopHeaderWeight.getValue() << '\n';
}
}
/// Print the basic block's name as:
///
/// bb.{number}[.{ir-name}] [(attributes...)]
///
/// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
/// (which is the default). If the IR block has no name, it is identified
/// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
///
/// When the \ref PrintNameAttributes flag is passed, additional attributes
/// of the block are printed when set.
///
/// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
/// the parts to print.
/// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
/// incorporate its own tracker when necessary to
/// determine the block's IR name.
void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
ModuleSlotTracker *moduleSlotTracker) const {
os << "bb." << getNumber();
bool hasAttributes = false;
if (printNameFlags & PrintNameIr) {
if (const auto *bb = getBasicBlock()) {
if (bb->hasName()) {
os << '.' << bb->getName();
} else {
hasAttributes = true;
os << " (";
int slot = -1;
if (moduleSlotTracker) {
slot = moduleSlotTracker->getLocalSlot(bb);
} else if (bb->getParent()) {
ModuleSlotTracker tmpTracker(bb->getModule(), false);
tmpTracker.incorporateFunction(*bb->getParent());
slot = tmpTracker.getLocalSlot(bb);
}
if (slot == -1)
os << "<ir-block badref>";
else
os << (Twine("%ir-block.") + Twine(slot)).str();
}
}
}
if (printNameFlags & PrintNameAttributes) {
if (hasAddressTaken()) {
os << (hasAttributes ? ", " : " (");
os << "address-taken";
hasAttributes = true;
}
if (isEHPad()) {
os << (hasAttributes ? ", " : " (");
os << "landing-pad";
hasAttributes = true;
}
if (isEHFuncletEntry()) {
os << (hasAttributes ? ", " : " (");
os << "ehfunclet-entry";
hasAttributes = true;
}
if (getAlignment() != Align(1)) {
os << (hasAttributes ? ", " : " (");
os << "align " << getAlignment().value();
hasAttributes = true;
}
if (getSectionID() != MBBSectionID(0)) {
os << (hasAttributes ? ", " : " (");
os << "bbsections ";
switch (getSectionID().Type) {
case MBBSectionID::SectionType::Exception:
os << "Exception";
break;
case MBBSectionID::SectionType::Cold:
os << "Cold";
break;
default:
os << getSectionID().Number;
}
hasAttributes = true;
}
}
if (hasAttributes)
os << ')';
}
void MachineBasicBlock::printAsOperand(raw_ostream &OS,
bool /*PrintType*/) const {
OS << '%';
printName(OS, 0);
}
void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
LiveInVector::iterator I = find_if(
LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
if (I == LiveIns.end())
return;
I->LaneMask &= ~LaneMask;
if (I->LaneMask.none())
LiveIns.erase(I);
}
MachineBasicBlock::livein_iterator
MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
// Get non-const version of iterator.
LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
return LiveIns.erase(LI);
}
bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
livein_iterator I = find_if(
LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
return I != livein_end() && (I->LaneMask & LaneMask).any();
}
void MachineBasicBlock::sortUniqueLiveIns() {
llvm::sort(LiveIns,
[](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
return LI0.PhysReg < LI1.PhysReg;
});
// Liveins are sorted by physreg now we can merge their lanemasks.
LiveInVector::const_iterator I = LiveIns.begin();
LiveInVector::const_iterator J;
LiveInVector::iterator Out = LiveIns.begin();
for (; I != LiveIns.end(); ++Out, I = J) {
MCRegister PhysReg = I->PhysReg;
LaneBitmask LaneMask = I->LaneMask;
for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
LaneMask |= J->LaneMask;
Out->PhysReg = PhysReg;
Out->LaneMask = LaneMask;
}
LiveIns.erase(Out, LiveIns.end());
}
Register
MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
assert(getParent() && "MBB must be inserted in function");
assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
assert(RC && "Register class is required");
assert((isEHPad() || this == &getParent()->front()) &&
"Only the entry block and landing pads can have physreg live ins");
bool LiveIn = isLiveIn(PhysReg);
iterator I = SkipPHIsAndLabels(begin()), E = end();
MachineRegisterInfo &MRI = getParent()->getRegInfo();
const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
// Look for an existing copy.
if (LiveIn)
for (;I != E && I->isCopy(); ++I)
if (I->getOperand(1).getReg() == PhysReg) {
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register VirtReg = I->getOperand(0).getReg();
if (!MRI.constrainRegClass(VirtReg, RC))
llvm_unreachable("Incompatible live-in register class.");
return VirtReg;
}
// No luck, create a virtual register.
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register VirtReg = MRI.createVirtualRegister(RC);
BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
.addReg(PhysReg, RegState::Kill);
if (!LiveIn)
addLiveIn(PhysReg);
return VirtReg;
}
void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
getParent()->splice(NewAfter->getIterator(), getIterator());
}
void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
getParent()->splice(++NewBefore->getIterator(), getIterator());
}
void MachineBasicBlock::updateTerminator(
MachineBasicBlock *PreviousLayoutSuccessor) {
LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
<< "\n");
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
// A block with no successors has no concerns with fall-through edges.
if (this->succ_empty())
return;
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
Make MachineBasicBlock::updateTerminator to update DebugLoc as well Summary: Currently MachineBasicBlock::updateTerminator simply drops DebugLoc for newly created branch instructions, which may cause incorrect stepping and/or imprecise sample profile data. Below is an example: ``` 1 extern int bar(int x); 2 3 int foo(int *begin, int *end) { 4 int *i; 5 int ret = 0; 6 for ( 7 i = begin ; 8 i != end ; 9 i++) 10 { 11 ret += bar(*i); 12 } 13 return ret; 14 } ``` Below is a bitcode of 'foo' at the end of LLVM-IR level optimizations with -O3: ``` define i32 @foo(i32* readonly %begin, i32* readnone %end) !dbg !4 { entry: %cmp6 = icmp eq i32* %begin, %end, !dbg !9 br i1 %cmp6, label %for.end, label %for.body.preheader, !dbg !12 for.body.preheader: ; preds = %entry br label %for.body, !dbg !13 for.body: ; preds = %for.body.preheader, %for.body %ret.08 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ] %i.07 = phi i32* [ %incdec.ptr, %for.body ], [ %begin, %for.body.preheader ] %0 = load i32, i32* %i.07, align 4, !dbg !13, !tbaa !15 %call = tail call i32 @bar(i32 %0), !dbg !19 %add = add nsw i32 %call, %ret.08, !dbg !20 %incdec.ptr = getelementptr inbounds i32, i32* %i.07, i64 1, !dbg !21 %cmp = icmp eq i32* %incdec.ptr, %end, !dbg !9 br i1 %cmp, label %for.end.loopexit, label %for.body, !dbg !12, !llvm.loop !22 for.end.loopexit: ; preds = %for.body br label %for.end, !dbg !24 for.end: ; preds = %for.end.loopexit, %entry %ret.0.lcssa = phi i32 [ 0, %entry ], [ %add, %for.end.loopexit ] ret i32 %ret.0.lcssa, !dbg !24 } ``` where ``` !12 = !DILocation(line: 6, column: 3, scope: !11) ``` . As you can see, the terminator of 'entry' block, which is a loop control branch, has a DebugLoc of line 6, column 3. Howerver, after the execution of 'MachineBlock::updateTerminator' function, which is triggered by MachineSinking pass, the DebugLoc info is dropped as below (see there's no debug-location for JNE_1): ``` bb.0.entry: successors: %bb.4(0x30000000), %bb.1.for.body.preheader(0x50000000) liveins: %rdi, %rsi %6 = COPY %rsi %5 = COPY %rdi %8 = SUB64rr %5, %6, implicit-def %eflags, debug-location !9 JNE_1 %bb.1.for.body.preheader, implicit %eflags ``` This patch addresses this issue and make newly created branch instructions to keep debug-location info. Reviewers: aprantl, MatzeB, craig.topper, qcolombet Reviewed By: qcolombet Subscribers: qcolombet, llvm-commits Differential Revision: https://reviews.llvm.org/D29596 llvm-svn: 294976
2017-02-13 19:15:31 +01:00
DebugLoc DL = findBranchDebugLoc();
bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
(void) B;
assert(!B && "UpdateTerminators requires analyzable predecessors!");
if (Cond.empty()) {
if (TBB) {
// The block has an unconditional branch. If its successor is now its
// layout successor, delete the branch.
if (isLayoutSuccessor(TBB))
TII->removeBranch(*this);
} else {
// The block has an unconditional fallthrough, or the end of the block is
// unreachable.
// Unfortunately, whether the end of the block is unreachable is not
// immediately obvious; we must fall back to checking the successor list,
// and assuming that if the passed in block is in the succesor list and
// not an EHPad, it must be the intended target.
if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
PreviousLayoutSuccessor->isEHPad())
return;
// If the unconditional successor block is not the current layout
// successor, insert a branch to jump to it.
if (!isLayoutSuccessor(PreviousLayoutSuccessor))
TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
}
return;
}
if (FBB) {
// The block has a non-fallthrough conditional branch. If one of its
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (isLayoutSuccessor(TBB)) {
if (TII->reverseBranchCondition(Cond))
return;
TII->removeBranch(*this);
TII->insertBranch(*this, FBB, nullptr, Cond, DL);
} else if (isLayoutSuccessor(FBB)) {
TII->removeBranch(*this);
TII->insertBranch(*this, TBB, nullptr, Cond, DL);
}
return;
}
// We now know we're going to fallthrough to PreviousLayoutSuccessor.
assert(PreviousLayoutSuccessor);
assert(!PreviousLayoutSuccessor->isEHPad());
assert(isSuccessor(PreviousLayoutSuccessor));
if (PreviousLayoutSuccessor == TBB) {
// We had a fallthrough to the same basic block as the conditional jump
// targets. Remove the conditional jump, leaving an unconditional
// fallthrough or an unconditional jump.
TII->removeBranch(*this);
if (!isLayoutSuccessor(TBB)) {
Cond.clear();
TII->insertBranch(*this, TBB, nullptr, Cond, DL);
}
return;
}
// The block has a fallthrough conditional branch.
if (isLayoutSuccessor(TBB)) {
if (TII->reverseBranchCondition(Cond)) {
// We can't reverse the condition, add an unconditional branch.
Cond.clear();
TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
return;
}
TII->removeBranch(*this);
TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
} else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
TII->removeBranch(*this);
TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
}
}
void MachineBasicBlock::validateSuccProbs() const {
#ifndef NDEBUG
int64_t Sum = 0;
for (auto Prob : Probs)
Sum += Prob.getNumerator();
// Due to precision issue, we assume that the sum of probabilities is one if
// the difference between the sum of their numerators and the denominator is
// no greater than the number of successors.
assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
Probs.size() &&
"The sum of successors's probabilities exceeds one.");
#endif // NDEBUG
}
void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
BranchProbability Prob) {
// Probability list is either empty (if successor list isn't empty, this means
// disabled optimization) or has the same size as successor list.
if (!(Probs.empty() && !Successors.empty()))
Probs.push_back(Prob);
Successors.push_back(Succ);
Succ->addPredecessor(this);
}
void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
// We need to make sure probability list is either empty or has the same size
// of successor list. When this function is called, we can safely delete all
// probability in the list.
Probs.clear();
Successors.push_back(Succ);
Succ->addPredecessor(this);
}
[SLH] Introduce a new pass to do Speculative Load Hardening to mitigate Spectre variant #1 for x86. There is a lengthy, detailed RFC thread on llvm-dev which discusses the high level issues. High level discussion is probably best there. I've split the design document out of this patch and will land it separately once I update it to reflect the latest edits and updates to the Google doc used in the RFC thread. This patch is really just an initial step. It isn't quite ready for prime time and is only exposed via debugging flags. It has two major limitations currently: 1) It only supports x86-64, and only certain ABIs. Many assumptions are currently hard-coded and need to be factored out of the code here. 2) It doesn't include any options for more fine-grained control, either of which control flow edges are significant or which loads are important to be hardened. 3) The code is still quite rough and the testing lighter than I'd like. However, this is enough for people to begin using. I have had numerous requests from people to be able to experiment with this patch to understand the trade-offs it presents and how to use it. We would also like to encourage work to similar effect in other toolchains. The ARM folks are actively developing a system based on this for AArch64. We hope to merge this with their efforts when both are far enough along. But we also don't want to block making this available on that effort. Many thanks to the *numerous* people who helped along the way here. For this patch in particular, both Eric and Craig did a ton of review to even have confidence in it as an early, rough cut at this functionality. Differential Revision: https://reviews.llvm.org/D44824 llvm-svn: 336990
2018-07-13 13:13:58 +02:00
void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
MachineBasicBlock *New,
bool NormalizeSuccProbs) {
succ_iterator OldI = llvm::find(successors(), Old);
assert(OldI != succ_end() && "Old is not a successor of this block!");
2020-11-20 07:07:55 +01:00
assert(!llvm::is_contained(successors(), New) &&
[SLH] Introduce a new pass to do Speculative Load Hardening to mitigate Spectre variant #1 for x86. There is a lengthy, detailed RFC thread on llvm-dev which discusses the high level issues. High level discussion is probably best there. I've split the design document out of this patch and will land it separately once I update it to reflect the latest edits and updates to the Google doc used in the RFC thread. This patch is really just an initial step. It isn't quite ready for prime time and is only exposed via debugging flags. It has two major limitations currently: 1) It only supports x86-64, and only certain ABIs. Many assumptions are currently hard-coded and need to be factored out of the code here. 2) It doesn't include any options for more fine-grained control, either of which control flow edges are significant or which loads are important to be hardened. 3) The code is still quite rough and the testing lighter than I'd like. However, this is enough for people to begin using. I have had numerous requests from people to be able to experiment with this patch to understand the trade-offs it presents and how to use it. We would also like to encourage work to similar effect in other toolchains. The ARM folks are actively developing a system based on this for AArch64. We hope to merge this with their efforts when both are far enough along. But we also don't want to block making this available on that effort. Many thanks to the *numerous* people who helped along the way here. For this patch in particular, both Eric and Craig did a ton of review to even have confidence in it as an early, rough cut at this functionality. Differential Revision: https://reviews.llvm.org/D44824 llvm-svn: 336990
2018-07-13 13:13:58 +02:00
"New is already a successor of this block!");
// Add a new successor with equal probability as the original one. Note
// that we directly copy the probability using the iterator rather than
// getting a potentially synthetic probability computed when unknown. This
// preserves the probabilities as-is and then we can renormalize them and
// query them effectively afterward.
addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
: *getProbabilityIterator(OldI));
if (NormalizeSuccProbs)
normalizeSuccProbs();
}
void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
bool NormalizeSuccProbs) {
succ_iterator I = find(Successors, Succ);
removeSuccessor(I, NormalizeSuccProbs);
}
2011-06-16 20:01:17 +02:00
MachineBasicBlock::succ_iterator
MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
assert(I != Successors.end() && "Not a current successor!");
// If probability list is empty it means we don't use it (disabled
// optimization).
if (!Probs.empty()) {
probability_iterator WI = getProbabilityIterator(I);
Probs.erase(WI);
if (NormalizeSuccProbs)
normalizeSuccProbs();
}
(*I)->removePredecessor(this);
return Successors.erase(I);
}
void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
MachineBasicBlock *New) {
if (Old == New)
return;
succ_iterator E = succ_end();
succ_iterator NewI = E;
succ_iterator OldI = E;
for (succ_iterator I = succ_begin(); I != E; ++I) {
if (*I == Old) {
OldI = I;
if (NewI != E)
break;
}
if (*I == New) {
NewI = I;
if (OldI != E)
break;
}
}
assert(OldI != E && "Old is not a successor of this block");
// If New isn't already a successor, let it take Old's place.
if (NewI == E) {
Old->removePredecessor(this);
New->addPredecessor(this);
*OldI = New;
return;
}
// New is already a successor.
// Update its probability instead of adding a duplicate edge.
2015-12-01 06:29:22 +01:00
if (!Probs.empty()) {
auto ProbIter = getProbabilityIterator(NewI);
if (!ProbIter->isUnknown())
*ProbIter += *getProbabilityIterator(OldI);
}
removeSuccessor(OldI);
}
[x86] Introduce a pass to begin more systematically fixing PR36028 and similar issues. The key idea is to lower COPY nodes populating EFLAGS by scanning the uses of EFLAGS and introducing dedicated code to preserve the necessary state in a GPR. In the vast majority of cases, these uses are cmovCC and jCC instructions. For such cases, we can very easily save and restore the necessary information by simply inserting a setCC into a GPR where the original flags are live, and then testing that GPR directly to feed the cmov or conditional branch. However, things are a bit more tricky if arithmetic is using the flags. This patch handles the vast majority of cases that seem to come up in practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of partially preserved EFLAGS as LLVM doesn't currently model that at all. There are a large number of operations that techinaclly observe EFLAGS currently but shouldn't in this case -- they typically are using DF. Currently, they will not be handled by this approach. However, I have never seen this issue come up in practice. It is already pretty rare to have these patterns come up in practical code with LLVM. I had to resort to writing MIR tests to cover most of the logic in this pass already. I suspect even with its current amount of coverage of arithmetic users of EFLAGS it will be a significant improvement over the current use of pushf/popf. It will also produce substantially faster code in most of the common patterns. This patch also removes all of the old lowering for EFLAGS copies, and the hack that forced us to use a frame pointer when EFLAGS copies were found anywhere in a function so that the dynamic stack adjustment wasn't a problem. None of this is needed as we now lower all of these copies directly in MI and without require stack adjustments. Lots of thanks to Reid who came up with several aspects of this approach, and Craig who helped me work out a couple of things tripping me up while working on this. Differential Revision: https://reviews.llvm.org/D45146 llvm-svn: 329657
2018-04-10 03:41:17 +02:00
void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
succ_iterator I) {
if (!Orig->Probs.empty())
[x86] Introduce a pass to begin more systematically fixing PR36028 and similar issues. The key idea is to lower COPY nodes populating EFLAGS by scanning the uses of EFLAGS and introducing dedicated code to preserve the necessary state in a GPR. In the vast majority of cases, these uses are cmovCC and jCC instructions. For such cases, we can very easily save and restore the necessary information by simply inserting a setCC into a GPR where the original flags are live, and then testing that GPR directly to feed the cmov or conditional branch. However, things are a bit more tricky if arithmetic is using the flags. This patch handles the vast majority of cases that seem to come up in practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of partially preserved EFLAGS as LLVM doesn't currently model that at all. There are a large number of operations that techinaclly observe EFLAGS currently but shouldn't in this case -- they typically are using DF. Currently, they will not be handled by this approach. However, I have never seen this issue come up in practice. It is already pretty rare to have these patterns come up in practical code with LLVM. I had to resort to writing MIR tests to cover most of the logic in this pass already. I suspect even with its current amount of coverage of arithmetic users of EFLAGS it will be a significant improvement over the current use of pushf/popf. It will also produce substantially faster code in most of the common patterns. This patch also removes all of the old lowering for EFLAGS copies, and the hack that forced us to use a frame pointer when EFLAGS copies were found anywhere in a function so that the dynamic stack adjustment wasn't a problem. None of this is needed as we now lower all of these copies directly in MI and without require stack adjustments. Lots of thanks to Reid who came up with several aspects of this approach, and Craig who helped me work out a couple of things tripping me up while working on this. Differential Revision: https://reviews.llvm.org/D45146 llvm-svn: 329657
2018-04-10 03:41:17 +02:00
addSuccessor(*I, Orig->getSuccProbability(I));
else
addSuccessorWithoutProb(*I);
}
void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
Predecessors.push_back(Pred);
}
void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
pred_iterator I = find(Predecessors, Pred);
assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
Predecessors.erase(I);
}
void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
if (this == FromMBB)
return;
2011-06-16 20:01:17 +02:00
while (!FromMBB->succ_empty()) {
MachineBasicBlock *Succ = *FromMBB->succ_begin();
// If probability list is empty it means we don't use it (disabled
// optimization).
2015-12-01 06:29:22 +01:00
if (!FromMBB->Probs.empty()) {
auto Prob = *FromMBB->Probs.begin();
addSuccessor(Succ, Prob);
} else
addSuccessorWithoutProb(Succ);
FromMBB->removeSuccessor(Succ);
}
}
void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
if (this == FromMBB)
return;
2011-06-16 20:01:17 +02:00
while (!FromMBB->succ_empty()) {
MachineBasicBlock *Succ = *FromMBB->succ_begin();
2015-12-01 06:29:22 +01:00
if (!FromMBB->Probs.empty()) {
auto Prob = *FromMBB->Probs.begin();
addSuccessor(Succ, Prob);
} else
addSuccessorWithoutProb(Succ);
FromMBB->removeSuccessor(Succ);
// Fix up any PHI nodes in the successor.
Succ->replacePhiUsesWith(FromMBB, this);
}
normalizeSuccProbs();
}
bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
return is_contained(predecessors(), MBB);
}
bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
return is_contained(successors(), MBB);
}
bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
MachineFunction::const_iterator I(this);
return std::next(I) == MachineFunction::const_iterator(MBB);
}
MachineBasicBlock *MachineBasicBlock::getFallThrough() {
MachineFunction::iterator Fallthrough = getIterator();
++Fallthrough;
// If FallthroughBlock is off the end of the function, it can't fall through.
if (Fallthrough == getParent()->end())
return nullptr;
// If FallthroughBlock isn't a successor, no fallthrough is possible.
if (!isSuccessor(&*Fallthrough))
return nullptr;
// Analyze the branches, if any, at the end of the block.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
// If we couldn't analyze the branch, examine the last instruction.
// If the block doesn't end in a known control barrier, assume fallthrough
// is possible. The isPredicated check is needed because this code can be
// called during IfConversion, where an instruction which is normally a
// Barrier is predicated and thus no longer an actual control barrier.
return (empty() || !back().isBarrier() || TII->isPredicated(back()))
? &*Fallthrough
: nullptr;
}
// If there is no branch, control always falls through.
if (!TBB) return &*Fallthrough;
// If there is some explicit branch to the fallthrough block, it can obviously
// reach, even though the branch should get folded to fall through implicitly.
if (MachineFunction::iterator(TBB) == Fallthrough ||
MachineFunction::iterator(FBB) == Fallthrough)
return &*Fallthrough;
// If it's an unconditional branch to some block not the fall through, it
// doesn't fall through.
if (Cond.empty()) return nullptr;
// Otherwise, if it is conditional and has no explicit false block, it falls
// through.
return (FBB == nullptr) ? &*Fallthrough : nullptr;
}
bool MachineBasicBlock::canFallThrough() {
return getFallThrough() != nullptr;
}
MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
bool UpdateLiveIns,
LiveIntervals *LIS) {
MachineBasicBlock::iterator SplitPoint(&MI);
++SplitPoint;
if (SplitPoint == end()) {
// Don't bother with a new block.
return this;
}
MachineFunction *MF = getParent();
LivePhysRegs LiveRegs;
if (UpdateLiveIns) {
// Make sure we add any physregs we define in the block as liveins to the
// new block.
MachineBasicBlock::iterator Prev(&MI);
LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
LiveRegs.addLiveOuts(*this);
for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
LiveRegs.stepBackward(*I);
}
MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
MF->insert(++MachineFunction::iterator(this), SplitBB);
SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
SplitBB->transferSuccessorsAndUpdatePHIs(this);
addSuccessor(SplitBB);
if (UpdateLiveIns)
addLiveIns(*SplitBB, LiveRegs);
if (LIS)
LIS->insertMBBInMaps(SplitBB);
return SplitBB;
}
MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
MachineBasicBlock *Succ, Pass &P,
std::vector<SparseBitVector<>> *LiveInSets) {
if (!canSplitCriticalEdge(Succ))
return nullptr;
MachineFunction *MF = getParent();
MachineBasicBlock *PrevFallthrough = getNextNode();
DebugLoc DL; // FIXME: this is nowhere
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
<< " -- " << printMBBReference(*NMBB) << " -- "
<< printMBBReference(*Succ) << '\n');
LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
if (LIS)
LIS->insertMBBInMaps(NMBB);
else if (Indexes)
Indexes->insertMBBInMaps(NMBB);
// On some targets like Mips, branches may kill virtual registers. Make sure
// that LiveVariables is properly updated after updateTerminator replaces the
// terminators.
LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
// Collect a list of virtual registers killed by the terminators.
SmallVector<Register, 4> KilledRegs;
if (LV)
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I) {
MachineInstr *MI = &*I;
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
OE = MI->operands_end(); OI != OE; ++OI) {
if (!OI->isReg() || OI->getReg() == 0 ||
!OI->isUse() || !OI->isKill() || OI->isUndef())
continue;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register Reg = OI->getReg();
if (Register::isPhysicalRegister(Reg) ||
LV->getVarInfo(Reg).removeKill(*MI)) {
KilledRegs.push_back(Reg);
LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
OI->setIsKill(false);
}
}
}
SmallVector<Register, 4> UsedRegs;
if (LIS) {
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I) {
MachineInstr *MI = &*I;
for (MachineInstr::mop_iterator OI = MI->operands_begin(),
OE = MI->operands_end(); OI != OE; ++OI) {
if (!OI->isReg() || OI->getReg() == 0)
continue;
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register Reg = OI->getReg();
if (!is_contained(UsedRegs, Reg))
UsedRegs.push_back(Reg);
}
}
}
ReplaceUsesOfBlockWith(Succ, NMBB);
// If updateTerminator() removes instructions, we need to remove them from
// SlotIndexes.
SmallVector<MachineInstr*, 4> Terminators;
if (Indexes) {
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
Terminators.push_back(&*I);
}
// Since we replaced all uses of Succ with NMBB, that should also be treated
// as the fallthrough successor
if (Succ == PrevFallthrough)
PrevFallthrough = NMBB;
updateTerminator(PrevFallthrough);
if (Indexes) {
SmallVector<MachineInstr*, 4> NewTerminators;
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
NewTerminators.push_back(&*I);
for (MachineInstr *Terminator : Terminators) {
if (!is_contained(NewTerminators, Terminator))
Indexes->removeMachineInstrFromMaps(*Terminator);
}
}
// Insert unconditional "jump Succ" instruction in NMBB if necessary.
NMBB->addSuccessor(Succ);
if (!NMBB->isLayoutSuccessor(Succ)) {
SmallVector<MachineOperand, 4> Cond;
const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
if (Indexes) {
for (MachineInstr &MI : NMBB->instrs()) {
// Some instructions may have been moved to NMBB by updateTerminator(),
// so we first remove any instruction that already has an index.
if (Indexes->hasIndex(MI))
Indexes->removeMachineInstrFromMaps(MI);
Indexes->insertMachineInstrInMaps(MI);
}
}
}
// Fix PHI nodes in Succ so they refer to NMBB instead of this.
Succ->replacePhiUsesWith(this, NMBB);
// Inherit live-ins from the successor
for (const auto &LI : Succ->liveins())
NMBB->addLiveIn(LI);
// Update LiveVariables.
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
if (LV) {
// Restore kills of virtual registers that were killed by the terminators.
while (!KilledRegs.empty()) {
Register Reg = KilledRegs.pop_back_val();
for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
continue;
if (Register::isVirtualRegister(Reg))
LV->getVarInfo(Reg).Kills.push_back(&*I);
LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
break;
}
}
// Update relevant live-through information.
if (LiveInSets != nullptr)
LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
else
LV->addNewBlock(NMBB, this, Succ);
}
if (LIS) {
// After splitting the edge and updating SlotIndexes, live intervals may be
// in one of two situations, depending on whether this block was the last in
// the function. If the original block was the last in the function, all
// live intervals will end prior to the beginning of the new split block. If
// the original block was not at the end of the function, all live intervals
// will extend to the end of the new split block.
bool isLastMBB =
std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
SlotIndex PrevIndex = StartIndex.getPrevSlot();
SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
// Find the registers used from NMBB in PHIs in Succ.
SmallSet<Register, 8> PHISrcRegs;
for (MachineBasicBlock::instr_iterator
I = Succ->instr_begin(), E = Succ->instr_end();
I != E && I->isPHI(); ++I) {
for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
if (I->getOperand(ni+1).getMBB() == NMBB) {
MachineOperand &MO = I->getOperand(ni);
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register Reg = MO.getReg();
PHISrcRegs.insert(Reg);
if (MO.isUndef())
continue;
LiveInterval &LI = LIS->getInterval(Reg);
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI &&
"PHI sources should be live out of their predecessors.");
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
}
}
}
MachineRegisterInfo *MRI = &getParent()->getRegInfo();
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
Register Reg = Register::index2VirtReg(i);
if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
continue;
LiveInterval &LI = LIS->getInterval(Reg);
if (!LI.liveAt(PrevIndex))
continue;
bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
if (isLiveOut && isLastMBB) {
VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
assert(VNI && "LiveInterval should have VNInfo where it is live.");
LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
} else if (!isLiveOut && !isLastMBB) {
LI.removeSegment(StartIndex, EndIndex);
}
}
// Update all intervals for registers whose uses may have been modified by
// updateTerminator().
LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
}
if (MachineDominatorTree *MDT =
P.getAnalysisIfAvailable<MachineDominatorTree>())
[MachineDominatorTree] Provide a method to inform a MachineDominatorTree that a critical edge has been split. The MachineDominatorTree will when lazy update the underlying dominance properties when require. ** Context ** This is a follow-up of r215410. Each time a critical edge is split this invalidates the dominator tree information. Thus, subsequent queries of that interface will be slow until the underlying information is actually recomputed (costly). ** Problem ** Prior to this patch, splitting a critical edge needed to query the dominator tree to update the dominator information. Therefore, splitting a bunch of critical edges will likely produce poor performance as each query to the dominator tree will use the slow query path. This happens a lot in passes like MachineSink and PHIElimination. ** Proposed Solution ** Splitting a critical edge is a local modification of the CFG. Moreover, as soon as a critical edge is split, it is not critical anymore and thus cannot be a candidate for critical edge splitting anymore. In other words, the predecessor and successor of a basic block inserted on a critical edge cannot be inserted by critical edge splitting. Using these observations, we can pile up the splitting of critical edge and apply then at once before updating the DT information. The core of this patch moves the update of the MachineDominatorTree information from MachineBasicBlock::SplitCriticalEdge to a lazy MachineDominatorTree. ** Performance ** Thanks to this patch, the motivating example compiles in 4- minutes instead of 6+ minutes. No test case added as the motivating example as nothing special but being huge! The binaries are strictly identical for all the llvm test-suite + SPECs with and without this patch for both Os and O3. Regarding compile time, I observed only noise, although on average I saw a small improvement. <rdar://problem/17894619> llvm-svn: 215576
2014-08-13 23:00:07 +02:00
MDT->recordSplitCriticalEdge(this, Succ, NMBB);
if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
if (MachineLoop *TIL = MLI->getLoopFor(this)) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
if (TIL == DestLoop) {
// Both in the same loop, the NMBB joins loop.
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
} else if (TIL->contains(DestLoop)) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
} else if (DestLoop->contains(TIL)) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == Succ &&
"Should not create irreducible loops!");
if (MachineLoop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NMBB, MLI->getBase());
}
}
}
return NMBB;
}
bool MachineBasicBlock::canSplitCriticalEdge(
const MachineBasicBlock *Succ) const {
// Splitting the critical edge to a landing pad block is non-trivial. Don't do
// it in this generic function.
if (Succ->isEHPad())
return false;
Allow "callbr" to return non-void values Summary: Terminators in LLVM aren't prohibited from returning values. This means that the "callbr" instruction, which is used for "asm goto", can support "asm goto with outputs." This patch removes all restrictions against "callbr" returning values. The heavy lifting is done by the code generator. The "INLINEASM_BR" instruction's a terminator, and the code generator doesn't allow non-terminator instructions after a terminator. In order to correctly model the feature, we need to copy outputs from "INLINEASM_BR" into virtual registers. Of course, those copies aren't terminators. To get around this issue, we split the block containing the "INLINEASM_BR" right before the "COPY" instructions. This results in two cheats: - Any physical registers defined by "INLINEASM_BR" need to be marked as live-in into the block with the "COPY" instructions. This violates an assumption that physical registers aren't marked as "live-in" until after register allocation. But it seems as if the live-in information only needs to be correct after register allocation. So we're able to get away with this. - The indirect branches from the "INLINEASM_BR" are moved to the "COPY" block. This is to satisfy PHI nodes. I've been told that MLIR can support this handily, but until we're able to use it, we'll have to stick with the above. Reviewers: jyknight, nickdesaulniers, hfinkel, MaskRay, lattner Reviewed By: nickdesaulniers, MaskRay, lattner Subscribers: rriddle, qcolombet, jdoerfert, MatzeB, echristo, MaskRay, xbolva00, aaron.ballman, cfe-commits, JonChesterfield, hiraditya, llvm-commits, rnk, craig.topper Tags: #llvm, #clang Differential Revision: https://reviews.llvm.org/D69868
2020-02-25 03:28:32 +01:00
// Splitting the critical edge to a callbr's indirect block isn't advised.
// Don't do it in this generic function.
if (Succ->isInlineAsmBrIndirectTarget())
Allow "callbr" to return non-void values Summary: Terminators in LLVM aren't prohibited from returning values. This means that the "callbr" instruction, which is used for "asm goto", can support "asm goto with outputs." This patch removes all restrictions against "callbr" returning values. The heavy lifting is done by the code generator. The "INLINEASM_BR" instruction's a terminator, and the code generator doesn't allow non-terminator instructions after a terminator. In order to correctly model the feature, we need to copy outputs from "INLINEASM_BR" into virtual registers. Of course, those copies aren't terminators. To get around this issue, we split the block containing the "INLINEASM_BR" right before the "COPY" instructions. This results in two cheats: - Any physical registers defined by "INLINEASM_BR" need to be marked as live-in into the block with the "COPY" instructions. This violates an assumption that physical registers aren't marked as "live-in" until after register allocation. But it seems as if the live-in information only needs to be correct after register allocation. So we're able to get away with this. - The indirect branches from the "INLINEASM_BR" are moved to the "COPY" block. This is to satisfy PHI nodes. I've been told that MLIR can support this handily, but until we're able to use it, we'll have to stick with the above. Reviewers: jyknight, nickdesaulniers, hfinkel, MaskRay, lattner Reviewed By: nickdesaulniers, MaskRay, lattner Subscribers: rriddle, qcolombet, jdoerfert, MatzeB, echristo, MaskRay, xbolva00, aaron.ballman, cfe-commits, JonChesterfield, hiraditya, llvm-commits, rnk, craig.topper Tags: #llvm, #clang Differential Revision: https://reviews.llvm.org/D69868
2020-02-25 03:28:32 +01:00
return false;
Allow "callbr" to return non-void values Summary: Terminators in LLVM aren't prohibited from returning values. This means that the "callbr" instruction, which is used for "asm goto", can support "asm goto with outputs." This patch removes all restrictions against "callbr" returning values. The heavy lifting is done by the code generator. The "INLINEASM_BR" instruction's a terminator, and the code generator doesn't allow non-terminator instructions after a terminator. In order to correctly model the feature, we need to copy outputs from "INLINEASM_BR" into virtual registers. Of course, those copies aren't terminators. To get around this issue, we split the block containing the "INLINEASM_BR" right before the "COPY" instructions. This results in two cheats: - Any physical registers defined by "INLINEASM_BR" need to be marked as live-in into the block with the "COPY" instructions. This violates an assumption that physical registers aren't marked as "live-in" until after register allocation. But it seems as if the live-in information only needs to be correct after register allocation. So we're able to get away with this. - The indirect branches from the "INLINEASM_BR" are moved to the "COPY" block. This is to satisfy PHI nodes. I've been told that MLIR can support this handily, but until we're able to use it, we'll have to stick with the above. Reviewers: jyknight, nickdesaulniers, hfinkel, MaskRay, lattner Reviewed By: nickdesaulniers, MaskRay, lattner Subscribers: rriddle, qcolombet, jdoerfert, MatzeB, echristo, MaskRay, xbolva00, aaron.ballman, cfe-commits, JonChesterfield, hiraditya, llvm-commits, rnk, craig.topper Tags: #llvm, #clang Differential Revision: https://reviews.llvm.org/D69868
2020-02-25 03:28:32 +01:00
const MachineFunction *MF = getParent();
// Performance might be harmed on HW that implements branching using exec mask
// where both sides of the branches are always executed.
if (MF->getTarget().requiresStructuredCFG())
return false;
// We may need to update this's terminator, but we can't do that if
// analyzeBranch fails. If this uses a jump table, we won't touch it.
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
// AnalyzeBanch should modify this, since we did not allow modification.
if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
/*AllowModify*/ false))
return false;
// Avoid bugpoint weirdness: A block may end with a conditional branch but
// jumps to the same MBB is either case. We have duplicate CFG edges in that
// case that we can't handle. Since this never happens in properly optimized
// code, just skip those edges.
if (TBB && TBB == FBB) {
LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
<< printMBBReference(*this) << '\n');
return false;
}
return true;
}
/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
/// neighboring instructions so the bundle won't be broken by removing MI.
static void unbundleSingleMI(MachineInstr *MI) {
// Removing the first instruction in a bundle.
if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
MI->unbundleFromSucc();
// Removing the last instruction in a bundle.
if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
MI->unbundleFromPred();
// If MI is not bundled, or if it is internal to a bundle, the neighbor flags
// are already fine.
}
MachineBasicBlock::instr_iterator
MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
unbundleSingleMI(&*I);
return Insts.erase(I);
}
MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
unbundleSingleMI(MI);
MI->clearFlag(MachineInstr::BundledPred);
MI->clearFlag(MachineInstr::BundledSucc);
return Insts.remove(MI);
}
MachineBasicBlock::instr_iterator
MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
"Cannot insert instruction with bundle flags");
// Set the bundle flags when inserting inside a bundle.
if (I != instr_end() && I->isBundledWithPred()) {
MI->setFlag(MachineInstr::BundledPred);
MI->setFlag(MachineInstr::BundledSucc);
}
return Insts.insert(I, MI);
}
/// This method unlinks 'this' from the containing function, and returns it, but
/// does not delete it.
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->remove(this);
return this;
}
/// This method unlinks 'this' from the containing function, and deletes it.
void MachineBasicBlock::eraseFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->erase(this);
}
/// Given a machine basic block that branched to 'Old', change the code and CFG
/// so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Cannot replace self with self!");
MachineBasicBlock::instr_iterator I = instr_end();
while (I != instr_begin()) {
--I;
if (!I->isTerminator()) break;
// Scan the operands of this machine instruction, replacing any uses of Old
// with New.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (I->getOperand(i).isMBB() &&
I->getOperand(i).getMBB() == Old)
I->getOperand(i).setMBB(New);
}
// Update the successor information.
replaceSuccessor(Old, New);
}
void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
MachineBasicBlock *New) {
for (MachineInstr &MI : phis())
for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
MachineOperand &MO = MI.getOperand(i);
if (MO.getMBB() == Old)
MO.setMBB(New);
}
}
/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
/// instructions. Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
// Skip debug declarations, we don't want a DebugLoc from them.
MBBI = skipDebugInstructionsForward(MBBI, instr_end());
if (MBBI != instr_end())
return MBBI->getDebugLoc();
return {};
}
/// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
/// instructions. Return UnknownLoc if there is none.
DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
if (MBBI == instr_begin()) return {};
// Skip debug instructions, we don't want a DebugLoc from them.
MBBI = prev_nodbg(MBBI, instr_begin());
if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
return {};
}
Make MachineBasicBlock::updateTerminator to update DebugLoc as well Summary: Currently MachineBasicBlock::updateTerminator simply drops DebugLoc for newly created branch instructions, which may cause incorrect stepping and/or imprecise sample profile data. Below is an example: ``` 1 extern int bar(int x); 2 3 int foo(int *begin, int *end) { 4 int *i; 5 int ret = 0; 6 for ( 7 i = begin ; 8 i != end ; 9 i++) 10 { 11 ret += bar(*i); 12 } 13 return ret; 14 } ``` Below is a bitcode of 'foo' at the end of LLVM-IR level optimizations with -O3: ``` define i32 @foo(i32* readonly %begin, i32* readnone %end) !dbg !4 { entry: %cmp6 = icmp eq i32* %begin, %end, !dbg !9 br i1 %cmp6, label %for.end, label %for.body.preheader, !dbg !12 for.body.preheader: ; preds = %entry br label %for.body, !dbg !13 for.body: ; preds = %for.body.preheader, %for.body %ret.08 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ] %i.07 = phi i32* [ %incdec.ptr, %for.body ], [ %begin, %for.body.preheader ] %0 = load i32, i32* %i.07, align 4, !dbg !13, !tbaa !15 %call = tail call i32 @bar(i32 %0), !dbg !19 %add = add nsw i32 %call, %ret.08, !dbg !20 %incdec.ptr = getelementptr inbounds i32, i32* %i.07, i64 1, !dbg !21 %cmp = icmp eq i32* %incdec.ptr, %end, !dbg !9 br i1 %cmp, label %for.end.loopexit, label %for.body, !dbg !12, !llvm.loop !22 for.end.loopexit: ; preds = %for.body br label %for.end, !dbg !24 for.end: ; preds = %for.end.loopexit, %entry %ret.0.lcssa = phi i32 [ 0, %entry ], [ %add, %for.end.loopexit ] ret i32 %ret.0.lcssa, !dbg !24 } ``` where ``` !12 = !DILocation(line: 6, column: 3, scope: !11) ``` . As you can see, the terminator of 'entry' block, which is a loop control branch, has a DebugLoc of line 6, column 3. Howerver, after the execution of 'MachineBlock::updateTerminator' function, which is triggered by MachineSinking pass, the DebugLoc info is dropped as below (see there's no debug-location for JNE_1): ``` bb.0.entry: successors: %bb.4(0x30000000), %bb.1.for.body.preheader(0x50000000) liveins: %rdi, %rsi %6 = COPY %rsi %5 = COPY %rdi %8 = SUB64rr %5, %6, implicit-def %eflags, debug-location !9 JNE_1 %bb.1.for.body.preheader, implicit %eflags ``` This patch addresses this issue and make newly created branch instructions to keep debug-location info. Reviewers: aprantl, MatzeB, craig.topper, qcolombet Reviewed By: qcolombet Subscribers: qcolombet, llvm-commits Differential Revision: https://reviews.llvm.org/D29596 llvm-svn: 294976
2017-02-13 19:15:31 +01:00
/// Find and return the merged DebugLoc of the branch instructions of the block.
/// Return UnknownLoc if there is none.
DebugLoc
MachineBasicBlock::findBranchDebugLoc() {
DebugLoc DL;
Make MachineBasicBlock::updateTerminator to update DebugLoc as well Summary: Currently MachineBasicBlock::updateTerminator simply drops DebugLoc for newly created branch instructions, which may cause incorrect stepping and/or imprecise sample profile data. Below is an example: ``` 1 extern int bar(int x); 2 3 int foo(int *begin, int *end) { 4 int *i; 5 int ret = 0; 6 for ( 7 i = begin ; 8 i != end ; 9 i++) 10 { 11 ret += bar(*i); 12 } 13 return ret; 14 } ``` Below is a bitcode of 'foo' at the end of LLVM-IR level optimizations with -O3: ``` define i32 @foo(i32* readonly %begin, i32* readnone %end) !dbg !4 { entry: %cmp6 = icmp eq i32* %begin, %end, !dbg !9 br i1 %cmp6, label %for.end, label %for.body.preheader, !dbg !12 for.body.preheader: ; preds = %entry br label %for.body, !dbg !13 for.body: ; preds = %for.body.preheader, %for.body %ret.08 = phi i32 [ %add, %for.body ], [ 0, %for.body.preheader ] %i.07 = phi i32* [ %incdec.ptr, %for.body ], [ %begin, %for.body.preheader ] %0 = load i32, i32* %i.07, align 4, !dbg !13, !tbaa !15 %call = tail call i32 @bar(i32 %0), !dbg !19 %add = add nsw i32 %call, %ret.08, !dbg !20 %incdec.ptr = getelementptr inbounds i32, i32* %i.07, i64 1, !dbg !21 %cmp = icmp eq i32* %incdec.ptr, %end, !dbg !9 br i1 %cmp, label %for.end.loopexit, label %for.body, !dbg !12, !llvm.loop !22 for.end.loopexit: ; preds = %for.body br label %for.end, !dbg !24 for.end: ; preds = %for.end.loopexit, %entry %ret.0.lcssa = phi i32 [ 0, %entry ], [ %add, %for.end.loopexit ] ret i32 %ret.0.lcssa, !dbg !24 } ``` where ``` !12 = !DILocation(line: 6, column: 3, scope: !11) ``` . As you can see, the terminator of 'entry' block, which is a loop control branch, has a DebugLoc of line 6, column 3. Howerver, after the execution of 'MachineBlock::updateTerminator' function, which is triggered by MachineSinking pass, the DebugLoc info is dropped as below (see there's no debug-location for JNE_1): ``` bb.0.entry: successors: %bb.4(0x30000000), %bb.1.for.body.preheader(0x50000000) liveins: %rdi, %rsi %6 = COPY %rsi %5 = COPY %rdi %8 = SUB64rr %5, %6, implicit-def %eflags, debug-location !9 JNE_1 %bb.1.for.body.preheader, implicit %eflags ``` This patch addresses this issue and make newly created branch instructions to keep debug-location info. Reviewers: aprantl, MatzeB, craig.topper, qcolombet Reviewed By: qcolombet Subscribers: qcolombet, llvm-commits Differential Revision: https://reviews.llvm.org/D29596 llvm-svn: 294976
2017-02-13 19:15:31 +01:00
auto TI = getFirstTerminator();
while (TI != end() && !TI->isBranch())
++TI;
if (TI != end()) {
DL = TI->getDebugLoc();
for (++TI ; TI != end() ; ++TI)
if (TI->isBranch())
DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
}
return DL;
}
2015-12-01 06:29:22 +01:00
/// Return probability of the edge from this block to MBB.
BranchProbability
MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
if (Probs.empty())
return BranchProbability(1, succ_size());
const auto &Prob = *getProbabilityIterator(Succ);
if (Prob.isUnknown()) {
// For unknown probabilities, collect the sum of all known ones, and evenly
// ditribute the complemental of the sum to each unknown probability.
unsigned KnownProbNum = 0;
auto Sum = BranchProbability::getZero();
for (auto &P : Probs) {
if (!P.isUnknown()) {
Sum += P;
KnownProbNum++;
}
}
return Sum.getCompl() / (Probs.size() - KnownProbNum);
} else
return Prob;
}
/// Set successor probability of a given iterator.
void MachineBasicBlock::setSuccProbability(succ_iterator I,
BranchProbability Prob) {
assert(!Prob.isUnknown());
2015-12-01 06:29:22 +01:00
if (Probs.empty())
return;
*getProbabilityIterator(I) = Prob;
}
2015-12-01 06:29:22 +01:00
/// Return probability iterator corresonding to the I successor iterator
MachineBasicBlock::const_probability_iterator
MachineBasicBlock::getProbabilityIterator(
MachineBasicBlock::const_succ_iterator I) const {
assert(Probs.size() == Successors.size() && "Async probability list!");
const size_t index = std::distance(Successors.begin(), I);
assert(index < Probs.size() && "Not a current successor!");
return Probs.begin() + index;
}
2015-12-01 06:29:22 +01:00
/// Return probability iterator corresonding to the I successor iterator.
MachineBasicBlock::probability_iterator
MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
assert(Probs.size() == Successors.size() && "Async probability list!");
const size_t index = std::distance(Successors.begin(), I);
assert(index < Probs.size() && "Not a current successor!");
return Probs.begin() + index;
}
/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
/// as of just before "MI".
///
/// Search is localised to a neighborhood of
/// Neighborhood instructions before (searching for defs or kills) and N
/// instructions after (searching just for defs) MI.
MachineBasicBlock::LivenessQueryResult
MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
MCRegister Reg, const_iterator Before,
unsigned Neighborhood) const {
unsigned N = Neighborhood;
// Try searching forwards from Before, looking for reads or defs.
const_iterator I(Before);
for (; I != end() && N > 0; ++I) {
if (I->isDebugInstr())
continue;
--N;
PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
// Register is live when we read it here.
if (Info.Read)
return LQR_Live;
// Register is dead if we can fully overwrite or clobber it here.
if (Info.FullyDefined || Info.Clobbered)
return LQR_Dead;
}
// If we reached the end, it is safe to clobber Reg at the end of a block of
// no successor has it live in.
if (I == end()) {
for (MachineBasicBlock *S : successors()) {
for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
if (TRI->regsOverlap(LI.PhysReg, Reg))
return LQR_Live;
}
}
return LQR_Dead;
}
N = Neighborhood;
// Start by searching backwards from Before, looking for kills, reads or defs.
I = const_iterator(Before);
// If this is the first insn in the block, don't search backwards.
if (I != begin()) {
do {
--I;
if (I->isDebugInstr())
continue;
--N;
PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
// Defs happen after uses so they take precedence if both are present.
// Register is dead after a dead def of the full register.
if (Info.DeadDef)
return LQR_Dead;
// Register is (at least partially) live after a def.
if (Info.Defined) {
if (!Info.PartialDeadDef)
return LQR_Live;
// As soon as we saw a partial definition (dead or not),
// we cannot tell if the value is partial live without
// tracking the lanemasks. We are not going to do this,
// so fall back on the remaining of the analysis.
break;
}
// Register is dead after a full kill or clobber and no def.
if (Info.Killed || Info.Clobbered)
return LQR_Dead;
// Register must be live if we read it.
if (Info.Read)
return LQR_Live;
} while (I != begin() && N > 0);
}
// If all the instructions before this in the block are debug instructions,
// skip over them.
while (I != begin() && std::prev(I)->isDebugInstr())
--I;
// Did we get to the start of the block?
if (I == begin()) {
// If so, the register's state is definitely defined by the live-in state.
for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
if (TRI->regsOverlap(LI.PhysReg, Reg))
return LQR_Live;
return LQR_Dead;
}
// At this point we have no idea of the liveness of the register.
return LQR_Unknown;
}
const uint32_t *
MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
// EH funclet entry does not preserve any registers.
return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
}
const uint32_t *
MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
// If we see a return block with successors, this must be a funclet return,
// which does not preserve any registers. If there are no successors, we don't
// care what kind of return it is, putting a mask after it is a no-op.
return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
}
void MachineBasicBlock::clearLiveIns() {
LiveIns.clear();
}
MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
assert(getParent()->getProperties().hasProperty(
MachineFunctionProperties::Property::TracksLiveness) &&
"Liveness information is accurate");
return LiveIns.begin();
}
const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
const MBBSectionID
MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);