in cdp/cdp2 instructions. Also increase the hack with cdp/cdp2 instructions.
- Fix the encoding of cdp/cdp2 instructions for ARM (no thumb and thumb2 yet) and add testcases for t
hem.
llvm-svn: 123927
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
of the floating point types less than 64-bits. It's somewhat of a temporary
hack but forces more accurate modeling of register pressure and results
in fewer spills.
llvm-svn: 123811
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
into and/shift would cause nodes to move around and a dangling pointer
to happen. The code tried to avoid this with a HandleSDNode, but
got the details wrong.
llvm-svn: 123578
- Fixed :upper16: fix up routine. It should be shifting down the top 16 bits first.
- Added support for Thumb2 :lower16: and :upper16: fix up.
- Added :upper16: and :lower16: relocation support to mach-o object writer.
llvm-svn: 123424
the symbolic immediate names used for these instructions, fixing their pretty-printers, and
adding proper encoding information for them.
With this, we can properly pretty-print and encode assembly like:
mrc p15, #0, r3, c13, c0, #3
Fixes <rdar://problem/8857858>.
llvm-svn: 123404
set up the source operands. The original instr has an immediate operand that
should be replaced with the frame reg operand rather than just adding the
reg operand. Previously, the instruction ended up with too many operands
causing an assert() when adding the default predicate. rdar://8825456
llvm-svn: 123387
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
llvm-svn: 123369
.code 32 if the TargetMachine's isThumb() boolean does not match. The correct
fix is to switch ARM subtargets at that point and is tracked by rdar://8856789
which is bigger task.
llvm-svn: 123353
that way, unfortunately. If you want to change them to work additively instead
of a one-variant-kind-per-symbolref, that's great and I completely agree it's
worth doing, but it really should be a separate patch. Until then, this isn't
correct."
So I am reverting this bit until a more opportune time.
llvm-svn: 123340
R_ARM_MOVT_PREL and R_ARM_MOVW_PREL_NC.
2. Fix minor bug in ARMAsmPrinter - treat bitfield flag as a bitfield, not an enum.
3. Add support for 3 new elf section types (no-ops)
llvm-svn: 123294
carry setting flag from the mnemonic.
Note that this currently involves me disabling a number of working cases in
arm_instructions.s, this is a hopefully short term evil which will be rapidly
fixed (and greatly surpassed), assuming my current approach flies.
llvm-svn: 123238
Filling no-ops is done just before emitting of assembly,
when the instruction stream is final. No-ops are inserted
to align the instructions so the dual-issue of the pipeline
is utilized. This speeds up generated code with a minimum of
1% on a select set of algorithms.
This pass may be redundant if the instruction scheduler and
all subsequent passes that modify the instruction stream
(prolog+epilog inserter, register scavenger, are there others?)
are made aware of the instruction alignments.
llvm-svn: 123226
point values to their integer representation through the SSE intrinsic
calls. This is the last part of a README.txt entry for which I have real
world examples.
llvm-svn: 123206
perform rounding other than truncation in the IR. Common C code for this
turns into really an LLVM intrinsic call that blocks a lot of further
optimizations.
llvm-svn: 123135
physical register numbers.
This makes the hack used in LiveInterval official, and lets LiveInterval be
oblivious of stack slots.
The isPhysicalRegister() and isVirtualRegister() predicates don't know about
this, so when a variable may contain a stack slot, isStackSlot() should always
be tested first.
llvm-svn: 123128
Print virtual registers numbered from 0 instead of the arbitrary
FirstVirtualRegister. The first virtual register is printed as %vreg0.
TRI::NoRegister is printed as %noreg.
llvm-svn: 123107
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
llvm-svn: 122995
The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
llvm-svn: 122955
beginning of the "main" function. The assembler complains about the invalid
suffix for the 'call' instruction. The right instruction is "callq __main".
Patch by KS Sreeram!
llvm-svn: 122933
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
llvm-svn: 122832
prologue and epilogue if the adjustment is 8. Similarly, use pushl / popl if
the adjustment is 4 in 32-bit mode.
In the epilogue, takes care to pop to a caller-saved register that's not live
at the exit (either return or tailcall instruction).
rdar://8771137
llvm-svn: 122783
This allows us to compile:
void test(char *s, int a) {
__builtin_memset(s, a, 15);
}
into 1 mul + 3 stores instead of 3 muls + 3 stores.
llvm-svn: 122710
header for now for memset/memcpy opportunities. It turns out that loop-rotate
is successfully rotating loops, but *DOESN'T MERGE THE BLOCKS*, turning "for
loops" into 2 basic block loops that loop-idiom was ignoring.
With this fix, we form many *many* more memcpy and memsets than before, including
on the "history" loops in the viterbi benchmark, which look like this:
for (j=0; j<MAX_history; ++j) {
history_new[i][j+1] = history[2*i][j];
}
Transforming these loops into memcpy's speeds up the viterbi benchmark from
11.98s to 3.55s on my machine. Woo.
llvm-svn: 122685
numbering, in which it considers (for example) "%a = add i32 %x, %y" and
"%b = add i32 %x, %y" to be equal because the operands are equal and the
result of the instructions only depends on the values of the operands.
This has almost no effect (it removes 4 instructions from gcc-as-one-file),
and perhaps slows down compilation: I measured a 0.4% slowdown on the large
gcc-as-one-file testcase, but it wasn't statistically significant.
llvm-svn: 122654
DAG scheduling during isel. Most new functionality is currently
guarded by -enable-sched-cycles and -enable-sched-hazard.
Added InstrItineraryData::IssueWidth field, currently derived from
ARM itineraries, but could be initialized differently on other targets.
Added ScheduleHazardRecognizer::MaxLookAhead to indicate whether it is
active, and if so how many cycles of state it holds.
Added SchedulingPriorityQueue::HasReadyFilter to allowing gating entry
into the scheduler's available queue.
ScoreboardHazardRecognizer now accesses the ScheduleDAG in order to
get information about it's SUnits, provides RecedeCycle for bottom-up
scheduling, correctly computes scoreboard depth, tracks IssueCount, and
considers potential stall cycles when checking for hazards.
ScheduleDAGRRList now models machine cycles and hazards (under
flags). It tracks MinAvailableCycle, drives the hazard recognizer and
priority queue's ready filter, manages a new PendingQueue, properly
accounts for stall cycles, etc.
llvm-svn: 122541
If the basic block containing the BCCi64 (or BCCZi64) instruction ends with
an unconditional branch, that branch needs to be deleted before appending
the expansion of the BCCi64 to the end of the block.
llvm-svn: 122521
Type legalization splits up i64 values into pairs of i32 values, which leads
to poor quality code when inserting or extracting i64 vector elements.
If the vector element is loaded or stored, it can be treated as an f64 value
and loaded or stored directly from a VPR register. Use the pre-legalization
DAG combiner to cast those vector elements to f64 types so that the type
legalizer won't mess them up. Radar 8755338.
llvm-svn: 122319
to be the one we want to use. bugpoint reduced testcase is a little large,
I'll see if I can simplify it down more.
Fixes part of rdar://8782207
llvm-svn: 122307
tPseudoInst class, its size was changed from "special" to "2 bytes". This is
incorrect because the jump table will no longer be taken into account when
calculating branch offsets.
<rdar://problem/8782216>
llvm-svn: 122303
the same as setcc. Optimize ADDC(0,0,FLAGS) -> SET_CARRY(FLAGS). This is
a step towards finishing off PR5443. In the testcase in that bug we now get:
movq %rdi, %rax
addq %rsi, %rax
sbbq %rcx, %rcx
testb $1, %cl
setne %dl
ret
instead of:
movq %rdi, %rax
addq %rsi, %rax
movl $0, %ecx
adcq $0, %rcx
testq %rcx, %rcx
setne %dl
ret
llvm-svn: 122219
doesn't, match it back to setb.
On a 64-bit version of the testcase before we'd get:
movq %rdi, %rax
addq %rsi, %rax
sbbb %dl, %dl
andb $1, %dl
ret
now we get:
movq %rdi, %rax
addq %rsi, %rax
setb %dl
ret
llvm-svn: 122217
their carry depenedencies with MVT::Flag operands) and use clean and beautiful
EFLAGS dependences instead.
We do this by changing the modelling of SBB/ADC to have EFLAGS input and outputs
(which is what requires the previous scheduler change) and change X86 ISelLowering
to custom lower ADDC and friends down to X86ISD::ADD/ADC/SUB/SBB nodes.
With the previous series of changes, this causes no changes in the testsuite, woo.
llvm-svn: 122213
This resolves a README entry and technically resolves PR4916,
but we still get poor code for the testcase in that PR because
GVN isn't CSE'ing uadd with add, filed as PR8817.
Previously we got:
_test7: ## @test7
addq %rsi, %rdi
cmpq %rdi, %rsi
movl $42, %eax
cmovaq %rsi, %rax
ret
Now we get:
_test7: ## @test7
addq %rsi, %rdi
movl $42, %eax
cmovbq %rsi, %rax
ret
llvm-svn: 122182
It turns out that ppc backend has really weird interdependencies
over different hooks and all stuff is fragile wrt small changes.
This should fix PR8749
llvm-svn: 122155
ARM::tMOVgpr2gpr. But this check didn't change. As a result, we were getting
misaligned references to the jump table from an ADR instruction.
There is a test case, but unfortunately it's sensitive to random code changes.
<rdar://problem/8782223>
llvm-svn: 122131
may be called. If the entry block is empty, the insertion point iterator will be
the "end()" value. Calling ->getParent() on it (among others) causes problems.
Modify materializeFrameBaseRegister to take the machine basic block and insert
the frame base register at the beginning of that block. (It's very similar to
what the code does all ready. The only difference is that it will always insert
at the beginning of the entry block instead of after a previous materialization
of the frame base register. I doubt that that matters here.)
<rdar://problem/8782198>
llvm-svn: 122104
IsSymbolRefDifferenceFullyResolved, it turns out this does change behavior on
enough cases for x86-32 that I would rather wait a bit on it.
- In practice, we will want to change this eventually because it only means we
generate less relocations (it also eliminates the need for the horrible
'.set' hack that Darwin requires in some places).
llvm-svn: 122042