1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUInstructionSelector.cpp

2770 lines
94 KiB
C++
Raw Normal View History

//===- AMDGPUInstructionSelector.cpp ----------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPUInstructionSelector.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "amdgpu-isel"
using namespace llvm;
using namespace MIPatternMatch;
#define GET_GLOBALISEL_IMPL
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
#undef AMDGPUSubtarget
AMDGPUInstructionSelector::AMDGPUInstructionSelector(
const GCNSubtarget &STI, const AMDGPURegisterBankInfo &RBI,
const AMDGPUTargetMachine &TM)
: InstructionSelector(), TII(*STI.getInstrInfo()),
TRI(*STI.getRegisterInfo()), RBI(RBI), TM(TM),
STI(STI),
EnableLateStructurizeCFG(AMDGPUTargetMachine::EnableLateStructurizeCFG),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
const char *AMDGPUInstructionSelector::getName() { return DEBUG_TYPE; }
void AMDGPUInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits &KB,
CodeGenCoverage &CoverageInfo) {
MRI = &MF.getRegInfo();
InstructionSelector::setupMF(MF, KB, CoverageInfo);
}
bool AMDGPUInstructionSelector::isVCC(Register Reg,
const MachineRegisterInfo &MRI) const {
if (Register::isPhysicalRegister(Reg))
return Reg == TRI.getVCC();
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
const TargetRegisterClass *RC =
RegClassOrBank.dyn_cast<const TargetRegisterClass*>();
if (RC) {
const LLT Ty = MRI.getType(Reg);
return RC->hasSuperClassEq(TRI.getBoolRC()) &&
Ty.isValid() && Ty.getSizeInBits() == 1;
}
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
return RB->getID() == AMDGPU::VCCRegBankID;
}
bool AMDGPUInstructionSelector::constrainCopyLikeIntrin(MachineInstr &MI,
unsigned NewOpc) const {
MI.setDesc(TII.get(NewOpc));
MI.RemoveOperand(1); // Remove intrinsic ID.
MI.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
MachineOperand &Dst = MI.getOperand(0);
MachineOperand &Src = MI.getOperand(1);
// TODO: This should be legalized to s32 if needed
if (MRI->getType(Dst.getReg()) == LLT::scalar(1))
return false;
const TargetRegisterClass *DstRC
= TRI.getConstrainedRegClassForOperand(Dst, *MRI);
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (!DstRC || DstRC != SrcRC)
return false;
return RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI) &&
RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI);
}
bool AMDGPUInstructionSelector::selectCOPY(MachineInstr &I) const {
const DebugLoc &DL = I.getDebugLoc();
MachineBasicBlock *BB = I.getParent();
I.setDesc(TII.get(TargetOpcode::COPY));
const MachineOperand &Src = I.getOperand(1);
MachineOperand &Dst = I.getOperand(0);
Register DstReg = Dst.getReg();
Register SrcReg = Src.getReg();
if (isVCC(DstReg, *MRI)) {
if (SrcReg == AMDGPU::SCC) {
const TargetRegisterClass *RC
= TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (!RC)
return true;
return RBI.constrainGenericRegister(DstReg, *RC, *MRI);
}
if (!isVCC(SrcReg, *MRI)) {
// TODO: Should probably leave the copy and let copyPhysReg expand it.
if (!RBI.constrainGenericRegister(DstReg, *TRI.getBoolRC(), *MRI))
return false;
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
Register MaskedReg = MRI->createVirtualRegister(SrcRC);
// We can't trust the high bits at this point, so clear them.
// TODO: Skip masking high bits if def is known boolean.
unsigned AndOpc = TRI.isSGPRClass(SrcRC) ?
AMDGPU::S_AND_B32 : AMDGPU::V_AND_B32_e32;
BuildMI(*BB, &I, DL, TII.get(AndOpc), MaskedReg)
.addImm(1)
.addReg(SrcReg);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CMP_NE_U32_e64), DstReg)
.addImm(0)
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
.addReg(MaskedReg);
if (!MRI->getRegClassOrNull(SrcReg))
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
MRI->setRegClass(SrcReg, SrcRC);
I.eraseFromParent();
return true;
}
const TargetRegisterClass *RC =
TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (RC && !RBI.constrainGenericRegister(DstReg, *RC, *MRI))
return false;
// Don't constrain the source register to a class so the def instruction
// handles it (unless it's undef).
//
// FIXME: This is a hack. When selecting the def, we neeed to know
// specifically know that the result is VCCRegBank, and not just an SGPR
// with size 1. An SReg_32 with size 1 is ambiguous with wave32.
if (Src.isUndef()) {
const TargetRegisterClass *SrcRC =
TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (SrcRC && !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI))
return false;
}
return true;
}
for (const MachineOperand &MO : I.operands()) {
if (Register::isPhysicalRegister(MO.getReg()))
continue;
const TargetRegisterClass *RC =
TRI.getConstrainedRegClassForOperand(MO, *MRI);
if (!RC)
continue;
RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI);
}
return true;
}
bool AMDGPUInstructionSelector::selectPHI(MachineInstr &I) const {
const Register DefReg = I.getOperand(0).getReg();
const LLT DefTy = MRI->getType(DefReg);
// TODO: Verify this doesn't have insane operands (i.e. VGPR to SGPR copy)
const RegClassOrRegBank &RegClassOrBank =
MRI->getRegClassOrRegBank(DefReg);
const TargetRegisterClass *DefRC
= RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
if (!DefRC) {
if (!DefTy.isValid()) {
LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
return false;
}
const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
DefRC = TRI.getRegClassForTypeOnBank(DefTy, RB, *MRI);
if (!DefRC) {
LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
return false;
}
}
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
// TODO: Verify that all registers have the same bank
I.setDesc(TII.get(TargetOpcode::PHI));
return RBI.constrainGenericRegister(DefReg, *DefRC, *MRI);
}
MachineOperand
AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO,
const TargetRegisterClass &SubRC,
unsigned SubIdx) const {
MachineInstr *MI = MO.getParent();
MachineBasicBlock *BB = MO.getParent()->getParent();
Register DstReg = MRI->createVirtualRegister(&SubRC);
if (MO.isReg()) {
unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx);
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register Reg = MO.getReg();
BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg)
.addReg(Reg, 0, ComposedSubIdx);
return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(),
MO.isKill(), MO.isDead(), MO.isUndef(),
MO.isEarlyClobber(), 0, MO.isDebug(),
MO.isInternalRead());
}
assert(MO.isImm());
APInt Imm(64, MO.getImm());
switch (SubIdx) {
default:
llvm_unreachable("do not know to split immediate with this sub index.");
case AMDGPU::sub0:
return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue());
case AMDGPU::sub1:
return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue());
}
}
static unsigned getLogicalBitOpcode(unsigned Opc, bool Is64) {
switch (Opc) {
case AMDGPU::G_AND:
return Is64 ? AMDGPU::S_AND_B64 : AMDGPU::S_AND_B32;
case AMDGPU::G_OR:
return Is64 ? AMDGPU::S_OR_B64 : AMDGPU::S_OR_B32;
case AMDGPU::G_XOR:
return Is64 ? AMDGPU::S_XOR_B64 : AMDGPU::S_XOR_B32;
default:
llvm_unreachable("not a bit op");
}
}
bool AMDGPUInstructionSelector::selectG_AND_OR_XOR(MachineInstr &I) const {
MachineOperand &Dst = I.getOperand(0);
MachineOperand &Src0 = I.getOperand(1);
MachineOperand &Src1 = I.getOperand(2);
Register DstReg = Dst.getReg();
unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
if (DstRB->getID() == AMDGPU::VCCRegBankID) {
const TargetRegisterClass *RC = TRI.getBoolRC();
unsigned InstOpc = getLogicalBitOpcode(I.getOpcode(),
RC == &AMDGPU::SReg_64RegClass);
I.setDesc(TII.get(InstOpc));
// FIXME: Hack to avoid turning the register bank into a register class.
// The selector for G_ICMP relies on seeing the register bank for the result
// is VCC. In wave32 if we constrain the registers to SReg_32 here, it will
// be ambiguous whether it's a scalar or vector bool.
if (Src0.isUndef() && !MRI->getRegClassOrNull(Src0.getReg()))
MRI->setRegClass(Src0.getReg(), RC);
if (Src1.isUndef() && !MRI->getRegClassOrNull(Src1.getReg()))
MRI->setRegClass(Src1.getReg(), RC);
return RBI.constrainGenericRegister(DstReg, *RC, *MRI);
}
// TODO: Should this allow an SCC bank result, and produce a copy from SCC for
// the result?
if (DstRB->getID() == AMDGPU::SGPRRegBankID) {
unsigned InstOpc = getLogicalBitOpcode(I.getOpcode(), Size > 32);
I.setDesc(TII.get(InstOpc));
// Dead implicit-def of scc
I.addOperand(MachineOperand::CreateReg(AMDGPU::SCC, true, // isDef
true, // isImp
false, // isKill
true)); // isDead
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
return false;
}
bool AMDGPUInstructionSelector::selectG_ADD_SUB(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineFunction *MF = BB->getParent();
Register DstReg = I.getOperand(0).getReg();
const DebugLoc &DL = I.getDebugLoc();
unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const bool IsSALU = DstRB->getID() == AMDGPU::SGPRRegBankID;
const bool Sub = I.getOpcode() == TargetOpcode::G_SUB;
if (Size == 32) {
if (IsSALU) {
const unsigned Opc = Sub ? AMDGPU::S_SUB_U32 : AMDGPU::S_ADD_U32;
MachineInstr *Add =
BuildMI(*BB, &I, DL, TII.get(Opc), DstReg)
.add(I.getOperand(1))
.add(I.getOperand(2));
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI);
}
if (STI.hasAddNoCarry()) {
const unsigned Opc = Sub ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_ADD_U32_e64;
I.setDesc(TII.get(Opc));
I.addOperand(*MF, MachineOperand::CreateImm(0));
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
const unsigned Opc = Sub ? AMDGPU::V_SUB_I32_e64 : AMDGPU::V_ADD_I32_e64;
Register UnusedCarry = MRI->createVirtualRegister(TRI.getWaveMaskRegClass());
MachineInstr *Add
= BuildMI(*BB, &I, DL, TII.get(Opc), DstReg)
.addDef(UnusedCarry, RegState::Dead)
.add(I.getOperand(1))
.add(I.getOperand(2))
.addImm(0);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI);
}
assert(!Sub && "illegal sub should not reach here");
const TargetRegisterClass &RC
= IsSALU ? AMDGPU::SReg_64_XEXECRegClass : AMDGPU::VReg_64RegClass;
const TargetRegisterClass &HalfRC
= IsSALU ? AMDGPU::SReg_32RegClass : AMDGPU::VGPR_32RegClass;
MachineOperand Lo1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub0));
MachineOperand Lo2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub0));
MachineOperand Hi1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub1));
MachineOperand Hi2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub1));
Register DstLo = MRI->createVirtualRegister(&HalfRC);
Register DstHi = MRI->createVirtualRegister(&HalfRC);
if (IsSALU) {
BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo)
.add(Lo1)
.add(Lo2);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi)
.add(Hi1)
.add(Hi2);
} else {
const TargetRegisterClass *CarryRC = TRI.getWaveMaskRegClass();
Register CarryReg = MRI->createVirtualRegister(CarryRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADD_I32_e64), DstLo)
.addDef(CarryReg)
.add(Lo1)
.add(Lo2)
.addImm(0);
MachineInstr *Addc = BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADDC_U32_e64), DstHi)
.addDef(MRI->createVirtualRegister(CarryRC), RegState::Dead)
.add(Hi1)
.add(Hi2)
.addReg(CarryReg, RegState::Kill)
.addImm(0);
if (!constrainSelectedInstRegOperands(*Addc, TII, TRI, RBI))
return false;
}
BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(DstLo)
.addImm(AMDGPU::sub0)
.addReg(DstHi)
.addImm(AMDGPU::sub1);
if (!RBI.constrainGenericRegister(DstReg, RC, *MRI))
return false;
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_UADDO_USUBO_UADDE_USUBE(
MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineFunction *MF = BB->getParent();
const DebugLoc &DL = I.getDebugLoc();
Register Dst0Reg = I.getOperand(0).getReg();
Register Dst1Reg = I.getOperand(1).getReg();
const bool IsAdd = I.getOpcode() == AMDGPU::G_UADDO ||
I.getOpcode() == AMDGPU::G_UADDE;
const bool HasCarryIn = I.getOpcode() == AMDGPU::G_UADDE ||
I.getOpcode() == AMDGPU::G_USUBE;
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
if (isVCC(Dst1Reg, *MRI)) {
// The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
// carry out despite the _i32 name. These were renamed in VI to _U32.
// FIXME: We should probably rename the opcodes here.
unsigned NoCarryOpc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
unsigned CarryOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
I.setDesc(TII.get(HasCarryIn ? CarryOpc : NoCarryOpc));
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
I.addOperand(*MF, MachineOperand::CreateImm(0));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
Register Src0Reg = I.getOperand(2).getReg();
Register Src1Reg = I.getOperand(3).getReg();
if (HasCarryIn) {
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(I.getOperand(4).getReg());
}
unsigned NoCarryOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
BuildMI(*BB, &I, DL, TII.get(HasCarryIn ? CarryOpc : NoCarryOpc), Dst0Reg)
.add(I.getOperand(2))
.add(I.getOperand(3));
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), Dst1Reg)
.addReg(AMDGPU::SCC);
if (!MRI->getRegClassOrNull(Dst1Reg))
MRI->setRegClass(Dst1Reg, &AMDGPU::SReg_32RegClass);
if (!RBI.constrainGenericRegister(Dst0Reg, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src0Reg, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src1Reg, AMDGPU::SReg_32RegClass, *MRI))
return false;
if (HasCarryIn &&
!RBI.constrainGenericRegister(I.getOperand(4).getReg(),
AMDGPU::SReg_32RegClass, *MRI))
return false;
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_EXTRACT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(SrcReg);
const unsigned SrcSize = SrcTy.getSizeInBits();
const unsigned DstSize = DstTy.getSizeInBits();
// TODO: Should handle any multiple of 32 offset.
unsigned Offset = I.getOperand(2).getImm();
if (Offset % DstSize != 0)
return false;
const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI);
const TargetRegisterClass *SrcRC =
TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI);
if (!SrcRC)
return false;
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(SrcRC, DstSize / 8);
const DebugLoc &DL = I.getDebugLoc();
MachineInstr *Copy = BuildMI(*BB, &I, DL, TII.get(TargetOpcode::COPY), DstReg)
.addReg(SrcReg, 0, SubRegs[Offset / DstSize]);
for (const MachineOperand &MO : Copy->operands()) {
const TargetRegisterClass *RC =
TRI.getConstrainedRegClassForOperand(MO, *MRI);
if (!RC)
continue;
RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI);
}
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_MERGE_VALUES(MachineInstr &MI) const {
MachineBasicBlock *BB = MI.getParent();
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(MI.getOperand(1).getReg());
const unsigned SrcSize = SrcTy.getSizeInBits();
if (SrcSize < 32)
return selectImpl(MI, *CoverageInfo);
const DebugLoc &DL = MI.getDebugLoc();
const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI);
const unsigned DstSize = DstTy.getSizeInBits();
const TargetRegisterClass *DstRC =
TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI);
if (!DstRC)
return false;
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(DstRC, SrcSize / 8);
MachineInstrBuilder MIB =
BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::REG_SEQUENCE), DstReg);
for (int I = 0, E = MI.getNumOperands() - 1; I != E; ++I) {
MachineOperand &Src = MI.getOperand(I + 1);
MIB.addReg(Src.getReg(), getUndefRegState(Src.isUndef()));
MIB.addImm(SubRegs[I]);
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (SrcRC && !RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI))
return false;
}
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI))
return false;
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_UNMERGE_VALUES(MachineInstr &MI) const {
MachineBasicBlock *BB = MI.getParent();
const int NumDst = MI.getNumOperands() - 1;
MachineOperand &Src = MI.getOperand(NumDst);
Register SrcReg = Src.getReg();
Register DstReg0 = MI.getOperand(0).getReg();
LLT DstTy = MRI->getType(DstReg0);
LLT SrcTy = MRI->getType(SrcReg);
const unsigned DstSize = DstTy.getSizeInBits();
const unsigned SrcSize = SrcTy.getSizeInBits();
const DebugLoc &DL = MI.getDebugLoc();
const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI);
const TargetRegisterClass *SrcRC =
TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI);
if (!SrcRC || !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI))
return false;
const unsigned SrcFlags = getUndefRegState(Src.isUndef());
// Note we could have mixed SGPR and VGPR destination banks for an SGPR
// source, and this relies on the fact that the same subregister indices are
// used for both.
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(SrcRC, DstSize / 8);
for (int I = 0, E = NumDst; I != E; ++I) {
MachineOperand &Dst = MI.getOperand(I);
BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::COPY), Dst.getReg())
.addReg(SrcReg, SrcFlags, SubRegs[I]);
const TargetRegisterClass *DstRC =
TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (DstRC && !RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI))
return false;
}
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_PTR_ADD(MachineInstr &I) const {
return selectG_ADD_SUB(I);
}
bool AMDGPUInstructionSelector::selectG_IMPLICIT_DEF(MachineInstr &I) const {
const MachineOperand &MO = I.getOperand(0);
// FIXME: Interface for getConstrainedRegClassForOperand needs work. The
// regbank check here is to know why getConstrainedRegClassForOperand failed.
const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, *MRI);
if ((!RC && !MRI->getRegBankOrNull(MO.getReg())) ||
(RC && RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI))) {
I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
return true;
}
return false;
}
bool AMDGPUInstructionSelector::selectG_INSERT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
Register DstReg = I.getOperand(0).getReg();
Register Src0Reg = I.getOperand(1).getReg();
Register Src1Reg = I.getOperand(2).getReg();
LLT Src1Ty = MRI->getType(Src1Reg);
unsigned DstSize = MRI->getType(DstReg).getSizeInBits();
unsigned InsSize = Src1Ty.getSizeInBits();
int64_t Offset = I.getOperand(3).getImm();
if (Offset % 32 != 0)
return false;
unsigned SubReg = TRI.getSubRegFromChannel(Offset / 32, InsSize / 32);
if (SubReg == AMDGPU::NoSubRegister)
return false;
const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI);
const TargetRegisterClass *DstRC =
TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI);
if (!DstRC)
return false;
const RegisterBank *Src0Bank = RBI.getRegBank(Src0Reg, *MRI, TRI);
const RegisterBank *Src1Bank = RBI.getRegBank(Src1Reg, *MRI, TRI);
const TargetRegisterClass *Src0RC =
TRI.getRegClassForSizeOnBank(DstSize, *Src0Bank, *MRI);
const TargetRegisterClass *Src1RC =
TRI.getRegClassForSizeOnBank(InsSize, *Src1Bank, *MRI);
// Deal with weird cases where the class only partially supports the subreg
// index.
Src0RC = TRI.getSubClassWithSubReg(Src0RC, SubReg);
if (!Src0RC)
return false;
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(Src0Reg, *Src0RC, *MRI) ||
!RBI.constrainGenericRegister(Src1Reg, *Src1RC, *MRI))
return false;
const DebugLoc &DL = I.getDebugLoc();
BuildMI(*BB, &I, DL, TII.get(TargetOpcode::INSERT_SUBREG), DstReg)
.addReg(Src0Reg)
.addReg(Src1Reg)
.addImm(SubReg);
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectInterpP1F16(MachineInstr &MI) const {
if (STI.getLDSBankCount() != 16)
return selectImpl(MI, *CoverageInfo);
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(2).getReg();
Register M0Val = MI.getOperand(6).getReg();
if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Dst, AMDGPU::VGPR_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src0, AMDGPU::VGPR_32RegClass, *MRI))
return false;
// This requires 2 instructions. It is possible to write a pattern to support
// this, but the generated isel emitter doesn't correctly deal with multiple
// output instructions using the same physical register input. The copy to m0
// is incorrectly placed before the second instruction.
//
// TODO: Match source modifiers.
Register InterpMov = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Val);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_MOV_F32), InterpMov)
.addImm(2)
.addImm(MI.getOperand(4).getImm()) // $attr
.addImm(MI.getOperand(3).getImm()); // $attrchan
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_P1LV_F16), Dst)
.addImm(0) // $src0_modifiers
.addReg(Src0) // $src0
.addImm(MI.getOperand(4).getImm()) // $attr
.addImm(MI.getOperand(3).getImm()) // $attrchan
.addImm(0) // $src2_modifiers
.addReg(InterpMov) // $src2 - 2 f16 values selected by high
.addImm(MI.getOperand(5).getImm()) // $high
.addImm(0) // $clamp
.addImm(0); // $omod
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_INTRINSIC(MachineInstr &I) const {
unsigned IntrinsicID = I.getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::amdgcn_if_break: {
MachineBasicBlock *BB = I.getParent();
// FIXME: Manually selecting to avoid dealiing with the SReg_1 trick
// SelectionDAG uses for wave32 vs wave64.
BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::SI_IF_BREAK))
.add(I.getOperand(0))
.add(I.getOperand(2))
.add(I.getOperand(3));
Register DstReg = I.getOperand(0).getReg();
Register Src0Reg = I.getOperand(2).getReg();
Register Src1Reg = I.getOperand(3).getReg();
I.eraseFromParent();
for (Register Reg : { DstReg, Src0Reg, Src1Reg })
MRI->setRegClass(Reg, TRI.getWaveMaskRegClass());
return true;
}
case Intrinsic::amdgcn_interp_p1_f16:
return selectInterpP1F16(I);
case Intrinsic::amdgcn_wqm:
return constrainCopyLikeIntrin(I, AMDGPU::WQM);
case Intrinsic::amdgcn_softwqm:
return constrainCopyLikeIntrin(I, AMDGPU::SOFT_WQM);
case Intrinsic::amdgcn_wwm:
return constrainCopyLikeIntrin(I, AMDGPU::WWM);
default:
return selectImpl(I, *CoverageInfo);
}
}
static int getV_CMPOpcode(CmpInst::Predicate P, unsigned Size) {
if (Size != 32 && Size != 64)
return -1;
switch (P) {
default:
llvm_unreachable("Unknown condition code!");
case CmpInst::ICMP_NE:
return Size == 32 ? AMDGPU::V_CMP_NE_U32_e64 : AMDGPU::V_CMP_NE_U64_e64;
case CmpInst::ICMP_EQ:
return Size == 32 ? AMDGPU::V_CMP_EQ_U32_e64 : AMDGPU::V_CMP_EQ_U64_e64;
case CmpInst::ICMP_SGT:
return Size == 32 ? AMDGPU::V_CMP_GT_I32_e64 : AMDGPU::V_CMP_GT_I64_e64;
case CmpInst::ICMP_SGE:
return Size == 32 ? AMDGPU::V_CMP_GE_I32_e64 : AMDGPU::V_CMP_GE_I64_e64;
case CmpInst::ICMP_SLT:
return Size == 32 ? AMDGPU::V_CMP_LT_I32_e64 : AMDGPU::V_CMP_LT_I64_e64;
case CmpInst::ICMP_SLE:
return Size == 32 ? AMDGPU::V_CMP_LE_I32_e64 : AMDGPU::V_CMP_LE_I64_e64;
case CmpInst::ICMP_UGT:
return Size == 32 ? AMDGPU::V_CMP_GT_U32_e64 : AMDGPU::V_CMP_GT_U64_e64;
case CmpInst::ICMP_UGE:
return Size == 32 ? AMDGPU::V_CMP_GE_U32_e64 : AMDGPU::V_CMP_GE_U64_e64;
case CmpInst::ICMP_ULT:
return Size == 32 ? AMDGPU::V_CMP_LT_U32_e64 : AMDGPU::V_CMP_LT_U64_e64;
case CmpInst::ICMP_ULE:
return Size == 32 ? AMDGPU::V_CMP_LE_U32_e64 : AMDGPU::V_CMP_LE_U64_e64;
}
}
int AMDGPUInstructionSelector::getS_CMPOpcode(CmpInst::Predicate P,
unsigned Size) const {
if (Size == 64) {
if (!STI.hasScalarCompareEq64())
return -1;
switch (P) {
case CmpInst::ICMP_NE:
return AMDGPU::S_CMP_LG_U64;
case CmpInst::ICMP_EQ:
return AMDGPU::S_CMP_EQ_U64;
default:
return -1;
}
}
if (Size != 32)
return -1;
switch (P) {
case CmpInst::ICMP_NE:
return AMDGPU::S_CMP_LG_U32;
case CmpInst::ICMP_EQ:
return AMDGPU::S_CMP_EQ_U32;
case CmpInst::ICMP_SGT:
return AMDGPU::S_CMP_GT_I32;
case CmpInst::ICMP_SGE:
return AMDGPU::S_CMP_GE_I32;
case CmpInst::ICMP_SLT:
return AMDGPU::S_CMP_LT_I32;
case CmpInst::ICMP_SLE:
return AMDGPU::S_CMP_LE_I32;
case CmpInst::ICMP_UGT:
return AMDGPU::S_CMP_GT_U32;
case CmpInst::ICMP_UGE:
return AMDGPU::S_CMP_GE_U32;
case CmpInst::ICMP_ULT:
return AMDGPU::S_CMP_LT_U32;
case CmpInst::ICMP_ULE:
return AMDGPU::S_CMP_LE_U32;
default:
llvm_unreachable("Unknown condition code!");
}
}
bool AMDGPUInstructionSelector::selectG_ICMP(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register SrcReg = I.getOperand(2).getReg();
unsigned Size = RBI.getSizeInBits(SrcReg, *MRI, TRI);
auto Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register CCReg = I.getOperand(0).getReg();
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
if (!isVCC(CCReg, *MRI)) {
int Opcode = getS_CMPOpcode(Pred, Size);
if (Opcode == -1)
return false;
MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode))
.add(I.getOperand(2))
.add(I.getOperand(3));
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CCReg)
.addReg(AMDGPU::SCC);
bool Ret =
constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI) &&
RBI.constrainGenericRegister(CCReg, AMDGPU::SReg_32RegClass, *MRI);
I.eraseFromParent();
return Ret;
}
int Opcode = getV_CMPOpcode(Pred, Size);
if (Opcode == -1)
return false;
MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode),
I.getOperand(0).getReg())
.add(I.getOperand(2))
.add(I.getOperand(3));
RBI.constrainGenericRegister(ICmp->getOperand(0).getReg(),
*TRI.getBoolRC(), *MRI);
bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
bool AMDGPUInstructionSelector::selectEndCfIntrinsic(MachineInstr &MI) const {
// FIXME: Manually selecting to avoid dealiing with the SReg_1 trick
// SelectionDAG uses for wave32 vs wave64.
MachineBasicBlock *BB = MI.getParent();
BuildMI(*BB, &MI, MI.getDebugLoc(), TII.get(AMDGPU::SI_END_CF))
.add(MI.getOperand(1));
Register Reg = MI.getOperand(1).getReg();
MI.eraseFromParent();
if (!MRI->getRegClassOrNull(Reg))
MRI->setRegClass(Reg, TRI.getWaveMaskRegClass());
return true;
}
static unsigned getDSShaderTypeValue(const MachineFunction &MF) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_PS:
return 1;
case CallingConv::AMDGPU_VS:
return 2;
case CallingConv::AMDGPU_GS:
return 3;
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_ES:
report_fatal_error("ds_ordered_count unsupported for this calling conv");
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_KERNEL:
case CallingConv::C:
case CallingConv::Fast:
default:
// Assume other calling conventions are various compute callable functions
return 0;
}
}
bool AMDGPUInstructionSelector::selectDSOrderedIntrinsic(
MachineInstr &MI, Intrinsic::ID IntrID) const {
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
const DebugLoc &DL = MI.getDebugLoc();
unsigned IndexOperand = MI.getOperand(7).getImm();
bool WaveRelease = MI.getOperand(8).getImm() != 0;
bool WaveDone = MI.getOperand(9).getImm() != 0;
if (WaveDone && !WaveRelease)
report_fatal_error("ds_ordered_count: wave_done requires wave_release");
unsigned OrderedCountIndex = IndexOperand & 0x3f;
IndexOperand &= ~0x3f;
unsigned CountDw = 0;
if (STI.getGeneration() >= AMDGPUSubtarget::GFX10) {
CountDw = (IndexOperand >> 24) & 0xf;
IndexOperand &= ~(0xf << 24);
if (CountDw < 1 || CountDw > 4) {
report_fatal_error(
"ds_ordered_count: dword count must be between 1 and 4");
}
}
if (IndexOperand)
report_fatal_error("ds_ordered_count: bad index operand");
unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
unsigned ShaderType = getDSShaderTypeValue(*MF);
unsigned Offset0 = OrderedCountIndex << 2;
unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
(Instruction << 4);
if (STI.getGeneration() >= AMDGPUSubtarget::GFX10)
Offset1 |= (CountDw - 1) << 6;
unsigned Offset = Offset0 | (Offset1 << 8);
Register M0Val = MI.getOperand(2).getReg();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Val);
Register DstReg = MI.getOperand(0).getReg();
Register ValReg = MI.getOperand(3).getReg();
MachineInstrBuilder DS =
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::DS_ORDERED_COUNT), DstReg)
.addReg(ValReg)
.addImm(Offset)
.cloneMemRefs(MI);
if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI))
return false;
bool Ret = constrainSelectedInstRegOperands(*DS, TII, TRI, RBI);
MI.eraseFromParent();
return Ret;
}
static unsigned gwsIntrinToOpcode(unsigned IntrID) {
switch (IntrID) {
case Intrinsic::amdgcn_ds_gws_init:
return AMDGPU::DS_GWS_INIT;
case Intrinsic::amdgcn_ds_gws_barrier:
return AMDGPU::DS_GWS_BARRIER;
case Intrinsic::amdgcn_ds_gws_sema_v:
return AMDGPU::DS_GWS_SEMA_V;
case Intrinsic::amdgcn_ds_gws_sema_br:
return AMDGPU::DS_GWS_SEMA_BR;
case Intrinsic::amdgcn_ds_gws_sema_p:
return AMDGPU::DS_GWS_SEMA_P;
case Intrinsic::amdgcn_ds_gws_sema_release_all:
return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
default:
llvm_unreachable("not a gws intrinsic");
}
}
bool AMDGPUInstructionSelector::selectDSGWSIntrinsic(MachineInstr &MI,
Intrinsic::ID IID) const {
if (IID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
!STI.hasGWSSemaReleaseAll())
return false;
// intrinsic ID, vsrc, offset
const bool HasVSrc = MI.getNumOperands() == 3;
assert(HasVSrc || MI.getNumOperands() == 2);
Register BaseOffset = MI.getOperand(HasVSrc ? 2 : 1).getReg();
const RegisterBank *OffsetRB = RBI.getRegBank(BaseOffset, *MRI, TRI);
if (OffsetRB->getID() != AMDGPU::SGPRRegBankID)
return false;
MachineInstr *OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI);
assert(OffsetDef);
unsigned ImmOffset;
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *Readfirstlane = nullptr;
// If we legalized the VGPR input, strip out the readfirstlane to analyze the
// incoming offset, in case there's an add of a constant. We'll have to put it
// back later.
if (OffsetDef->getOpcode() == AMDGPU::V_READFIRSTLANE_B32) {
Readfirstlane = OffsetDef;
BaseOffset = OffsetDef->getOperand(1).getReg();
OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI);
}
if (OffsetDef->getOpcode() == AMDGPU::G_CONSTANT) {
// If we have a constant offset, try to use the 0 in m0 as the base.
// TODO: Look into changing the default m0 initialization value. If the
// default -1 only set the low 16-bits, we could leave it as-is and add 1 to
// the immediate offset.
ImmOffset = OffsetDef->getOperand(1).getCImm()->getZExtValue();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addImm(0);
} else {
std::tie(BaseOffset, ImmOffset, OffsetDef)
= AMDGPU::getBaseWithConstantOffset(*MRI, BaseOffset);
if (Readfirstlane) {
// We have the constant offset now, so put the readfirstlane back on the
// variable component.
if (!RBI.constrainGenericRegister(BaseOffset, AMDGPU::VGPR_32RegClass, *MRI))
return false;
Readfirstlane->getOperand(1).setReg(BaseOffset);
BaseOffset = Readfirstlane->getOperand(0).getReg();
} else {
if (!RBI.constrainGenericRegister(BaseOffset,
AMDGPU::SReg_32RegClass, *MRI))
return false;
}
Register M0Base = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_LSHL_B32), M0Base)
.addReg(BaseOffset)
.addImm(16);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Base);
}
// The resource id offset is computed as (<isa opaque base> + M0[21:16] +
// offset field) % 64. Some versions of the programming guide omit the m0
// part, or claim it's from offset 0.
auto MIB = BuildMI(*MBB, &MI, DL, TII.get(gwsIntrinToOpcode(IID)));
if (HasVSrc) {
Register VSrc = MI.getOperand(1).getReg();
MIB.addReg(VSrc);
if (!RBI.constrainGenericRegister(VSrc, AMDGPU::VGPR_32RegClass, *MRI))
return false;
}
MIB.addImm(ImmOffset)
.addImm(-1) // $gds
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectDSAppendConsume(MachineInstr &MI,
bool IsAppend) const {
Register PtrBase = MI.getOperand(2).getReg();
LLT PtrTy = MRI->getType(PtrBase);
bool IsGDS = PtrTy.getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
unsigned Offset;
std::tie(PtrBase, Offset) = selectDS1Addr1OffsetImpl(MI.getOperand(2));
// TODO: Should this try to look through readfirstlane like GWS?
if (!isDSOffsetLegal(PtrBase, Offset, 16)) {
PtrBase = MI.getOperand(2).getReg();
Offset = 0;
}
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const unsigned Opc = IsAppend ? AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(PtrBase);
BuildMI(*MBB, &MI, DL, TII.get(Opc), MI.getOperand(0).getReg())
.addImm(Offset)
.addImm(IsGDS ? -1 : 0)
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_INTRINSIC_W_SIDE_EFFECTS(
MachineInstr &I) const {
unsigned IntrinsicID = I.getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::amdgcn_end_cf:
return selectEndCfIntrinsic(I);
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
return selectDSOrderedIntrinsic(I, IntrinsicID);
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_br:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all:
return selectDSGWSIntrinsic(I, IntrinsicID);
case Intrinsic::amdgcn_ds_append:
return selectDSAppendConsume(I, true);
case Intrinsic::amdgcn_ds_consume:
return selectDSAppendConsume(I, false);
default:
return selectImpl(I, *CoverageInfo);
}
}
bool AMDGPUInstructionSelector::selectG_SELECT(MachineInstr &I) const {
if (selectImpl(I, *CoverageInfo))
return true;
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register DstReg = I.getOperand(0).getReg();
unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI);
assert(Size <= 32 || Size == 64);
const MachineOperand &CCOp = I.getOperand(1);
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register CCReg = CCOp.getReg();
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
if (!isVCC(CCReg, *MRI)) {
unsigned SelectOpcode = Size == 64 ? AMDGPU::S_CSELECT_B64 :
AMDGPU::S_CSELECT_B32;
MachineInstr *CopySCC = BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(CCReg);
// The generic constrainSelectedInstRegOperands doesn't work for the scc register
// bank, because it does not cover the register class that we used to represent
// for it. So we need to manually set the register class here.
if (!MRI->getRegClassOrNull(CCReg))
MRI->setRegClass(CCReg, TRI.getConstrainedRegClassForOperand(CCOp, *MRI));
MachineInstr *Select = BuildMI(*BB, &I, DL, TII.get(SelectOpcode), DstReg)
.add(I.getOperand(2))
.add(I.getOperand(3));
bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI) |
constrainSelectedInstRegOperands(*CopySCC, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
// Wide VGPR select should have been split in RegBankSelect.
if (Size > 32)
return false;
MachineInstr *Select =
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.add(I.getOperand(3))
.addImm(0)
.add(I.getOperand(2))
.add(I.getOperand(1));
bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
bool AMDGPUInstructionSelector::selectG_STORE(MachineInstr &I) const {
initM0(I);
return selectImpl(I, *CoverageInfo);
}
static int sizeToSubRegIndex(unsigned Size) {
switch (Size) {
case 32:
return AMDGPU::sub0;
case 64:
return AMDGPU::sub0_sub1;
case 96:
return AMDGPU::sub0_sub1_sub2;
case 128:
return AMDGPU::sub0_sub1_sub2_sub3;
case 256:
return AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7;
default:
if (Size < 32)
return AMDGPU::sub0;
if (Size > 256)
return -1;
return sizeToSubRegIndex(PowerOf2Ceil(Size));
}
}
bool AMDGPUInstructionSelector::selectG_TRUNC(MachineInstr &I) const {
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI->getType(DstReg);
const LLT SrcTy = MRI->getType(SrcReg);
if (!DstTy.isScalar())
return false;
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
const LLT S1 = LLT::scalar(1);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
const RegisterBank *DstRB;
if (DstTy == S1) {
// This is a special case. We don't treat s1 for legalization artifacts as
// vcc booleans.
DstRB = SrcRB;
} else {
DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
if (SrcRB != DstRB)
return false;
}
unsigned DstSize = DstTy.getSizeInBits();
unsigned SrcSize = SrcTy.getSizeInBits();
const TargetRegisterClass *SrcRC
= TRI.getRegClassForSizeOnBank(SrcSize, *SrcRB, *MRI);
const TargetRegisterClass *DstRC
= TRI.getRegClassForSizeOnBank(DstSize, *DstRB, *MRI);
if (SrcSize > 32) {
int SubRegIdx = sizeToSubRegIndex(DstSize);
if (SubRegIdx == -1)
return false;
// Deal with weird cases where the class only partially supports the subreg
// index.
SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubRegIdx);
if (!SrcRC)
return false;
I.getOperand(1).setSubReg(SubRegIdx);
}
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC\n");
return false;
}
I.setDesc(TII.get(TargetOpcode::COPY));
return true;
}
/// \returns true if a bitmask for \p Size bits will be an inline immediate.
static bool shouldUseAndMask(unsigned Size, unsigned &Mask) {
Mask = maskTrailingOnes<unsigned>(Size);
int SignedMask = static_cast<int>(Mask);
return SignedMask >= -16 && SignedMask <= 64;
}
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
// Like RegisterBankInfo::getRegBank, but don't assume vcc for s1.
const RegisterBank *AMDGPUInstructionSelector::getArtifactRegBank(
Register Reg, const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
return RB;
// Ignore the type, since we don't use vcc in artifacts.
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
return &RBI.getRegBankFromRegClass(*RC, LLT());
return nullptr;
}
bool AMDGPUInstructionSelector::selectG_SZA_EXT(MachineInstr &I) const {
bool Signed = I.getOpcode() == AMDGPU::G_SEXT;
const DebugLoc &DL = I.getDebugLoc();
MachineBasicBlock &MBB = *I.getParent();
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI->getType(DstReg);
const LLT SrcTy = MRI->getType(SrcReg);
const unsigned SrcSize = SrcTy.getSizeInBits();
const unsigned DstSize = DstTy.getSizeInBits();
if (!DstTy.isScalar())
return false;
if (I.getOpcode() == AMDGPU::G_ANYEXT)
return selectCOPY(I);
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
// Artifact casts should never use vcc.
const RegisterBank *SrcBank = getArtifactRegBank(SrcReg, *MRI, TRI);
if (SrcBank->getID() == AMDGPU::VGPRRegBankID && DstSize <= 32) {
// 64-bit should have been split up in RegBankSelect
// Try to use an and with a mask if it will save code size.
unsigned Mask;
if (!Signed && shouldUseAndMask(SrcSize, Mask)) {
MachineInstr *ExtI =
BuildMI(MBB, I, DL, TII.get(AMDGPU::V_AND_B32_e32), DstReg)
.addImm(Mask)
.addReg(SrcReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
}
const unsigned BFE = Signed ? AMDGPU::V_BFE_I32 : AMDGPU::V_BFE_U32;
MachineInstr *ExtI =
BuildMI(MBB, I, DL, TII.get(BFE), DstReg)
.addReg(SrcReg)
.addImm(0) // Offset
.addImm(SrcSize); // Width
I.eraseFromParent();
return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
}
if (SrcBank->getID() == AMDGPU::SGPRRegBankID && DstSize <= 64) {
if (!RBI.constrainGenericRegister(SrcReg, AMDGPU::SReg_32RegClass, *MRI))
return false;
if (Signed && DstSize == 32 && (SrcSize == 8 || SrcSize == 16)) {
const unsigned SextOpc = SrcSize == 8 ?
AMDGPU::S_SEXT_I32_I8 : AMDGPU::S_SEXT_I32_I16;
BuildMI(MBB, I, DL, TII.get(SextOpc), DstReg)
.addReg(SrcReg);
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI);
}
const unsigned BFE64 = Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64;
const unsigned BFE32 = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
// Scalar BFE is encoded as S1[5:0] = offset, S1[22:16]= width.
if (DstSize > 32 && SrcSize <= 32) {
// We need a 64-bit register source, but the high bits don't matter.
Register ExtReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
Register UndefReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(MBB, I, DL, TII.get(AMDGPU::IMPLICIT_DEF), UndefReg);
BuildMI(MBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), ExtReg)
.addReg(SrcReg)
.addImm(AMDGPU::sub0)
.addReg(UndefReg)
.addImm(AMDGPU::sub1);
BuildMI(MBB, I, DL, TII.get(BFE64), DstReg)
.addReg(ExtReg)
.addImm(SrcSize << 16);
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_64RegClass, *MRI);
}
unsigned Mask;
if (!Signed && shouldUseAndMask(SrcSize, Mask)) {
BuildMI(MBB, I, DL, TII.get(AMDGPU::S_AND_B32), DstReg)
.addReg(SrcReg)
.addImm(Mask);
} else {
BuildMI(MBB, I, DL, TII.get(BFE32), DstReg)
.addReg(SrcReg)
.addImm(SrcSize << 16);
}
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI);
}
return false;
}
bool AMDGPUInstructionSelector::selectG_CONSTANT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineOperand &ImmOp = I.getOperand(1);
// The AMDGPU backend only supports Imm operands and not CImm or FPImm.
if (ImmOp.isFPImm()) {
const APInt &Imm = ImmOp.getFPImm()->getValueAPF().bitcastToAPInt();
ImmOp.ChangeToImmediate(Imm.getZExtValue());
} else if (ImmOp.isCImm()) {
ImmOp.ChangeToImmediate(ImmOp.getCImm()->getZExtValue());
}
Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVM Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Partial reverts in: X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned& MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register PPCFastISel.cpp - No Register::operator-=() PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned& MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor Manual fixups in: ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned& HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register. PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned& Depends on D65919 Reviewers: arsenm, bogner, craig.topper, RKSimon Reviewed By: arsenm Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D65962 llvm-svn: 369041
2019-08-15 21:22:08 +02:00
Register DstReg = I.getOperand(0).getReg();
unsigned Size;
bool IsSgpr;
const RegisterBank *RB = MRI->getRegBankOrNull(I.getOperand(0).getReg());
if (RB) {
IsSgpr = RB->getID() == AMDGPU::SGPRRegBankID;
Size = MRI->getType(DstReg).getSizeInBits();
} else {
const TargetRegisterClass *RC = TRI.getRegClassForReg(*MRI, DstReg);
IsSgpr = TRI.isSGPRClass(RC);
Size = TRI.getRegSizeInBits(*RC);
}
if (Size != 32 && Size != 64)
return false;
unsigned Opcode = IsSgpr ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
if (Size == 32) {
I.setDesc(TII.get(Opcode));
I.addImplicitDefUseOperands(*MF);
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
const DebugLoc &DL = I.getDebugLoc();
APInt Imm(Size, I.getOperand(1).getImm());
MachineInstr *ResInst;
if (IsSgpr && TII.isInlineConstant(Imm)) {
ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B64), DstReg)
.addImm(I.getOperand(1).getImm());
} else {
const TargetRegisterClass *RC = IsSgpr ?
&AMDGPU::SReg_32RegClass : &AMDGPU::VGPR_32RegClass;
Register LoReg = MRI->createVirtualRegister(RC);
Register HiReg = MRI->createVirtualRegister(RC);
BuildMI(*BB, &I, DL, TII.get(Opcode), LoReg)
.addImm(Imm.trunc(32).getZExtValue());
BuildMI(*BB, &I, DL, TII.get(Opcode), HiReg)
.addImm(Imm.ashr(32).getZExtValue());
ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(LoReg)
.addImm(AMDGPU::sub0)
.addReg(HiReg)
.addImm(AMDGPU::sub1);
}
// We can't call constrainSelectedInstRegOperands here, because it doesn't
// work for target independent opcodes
I.eraseFromParent();
const TargetRegisterClass *DstRC =
TRI.getConstrainedRegClassForOperand(ResInst->getOperand(0), *MRI);
if (!DstRC)
return true;
return RBI.constrainGenericRegister(DstReg, *DstRC, *MRI);
}
bool AMDGPUInstructionSelector::selectG_FNEG(MachineInstr &MI) const {
// Only manually handle the f64 SGPR case.
//
// FIXME: This is a workaround for 2.5 different tablegen problems. Because
// the bit ops theoretically have a second result due to the implicit def of
// SCC, the GlobalISelEmitter is overly conservative and rejects it. Fixing
// that is easy by disabling the check. The result works, but uses a
// nonsensical sreg32orlds_and_sreg_1 regclass.
//
// The DAG emitter is more problematic, and incorrectly adds both S_XOR_B32 to
// the variadic REG_SEQUENCE operands.
Register Dst = MI.getOperand(0).getReg();
const RegisterBank *DstRB = RBI.getRegBank(Dst, *MRI, TRI);
if (DstRB->getID() != AMDGPU::SGPRRegBankID ||
MRI->getType(Dst) != LLT::scalar(64))
return false;
Register Src = MI.getOperand(1).getReg();
MachineInstr *Fabs = getOpcodeDef(TargetOpcode::G_FABS, Src, *MRI);
if (Fabs)
Src = Fabs->getOperand(1).getReg();
if (!RBI.constrainGenericRegister(Src, AMDGPU::SReg_64RegClass, *MRI) ||
!RBI.constrainGenericRegister(Dst, AMDGPU::SReg_64RegClass, *MRI))
return false;
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
Register LoReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register HiReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register ConstReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register OpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(Src, 0, AMDGPU::sub0);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(Src, 0, AMDGPU::sub1);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), ConstReg)
.addImm(0x80000000);
// Set or toggle sign bit.
unsigned Opc = Fabs ? AMDGPU::S_OR_B32 : AMDGPU::S_XOR_B32;
BuildMI(*BB, &MI, DL, TII.get(Opc), OpReg)
.addReg(HiReg)
.addReg(ConstReg);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(LoReg)
.addImm(AMDGPU::sub0)
.addReg(OpReg)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return true;
}
static bool isConstant(const MachineInstr &MI) {
return MI.getOpcode() == TargetOpcode::G_CONSTANT;
}
void AMDGPUInstructionSelector::getAddrModeInfo(const MachineInstr &Load,
const MachineRegisterInfo &MRI, SmallVectorImpl<GEPInfo> &AddrInfo) const {
const MachineInstr *PtrMI = MRI.getUniqueVRegDef(Load.getOperand(1).getReg());
assert(PtrMI);
if (PtrMI->getOpcode() != TargetOpcode::G_PTR_ADD)
return;
GEPInfo GEPInfo(*PtrMI);
for (unsigned i = 1; i != 3; ++i) {
const MachineOperand &GEPOp = PtrMI->getOperand(i);
const MachineInstr *OpDef = MRI.getUniqueVRegDef(GEPOp.getReg());
assert(OpDef);
if (i == 2 && isConstant(*OpDef)) {
// TODO: Could handle constant base + variable offset, but a combine
// probably should have commuted it.
assert(GEPInfo.Imm == 0);
GEPInfo.Imm = OpDef->getOperand(1).getCImm()->getSExtValue();
continue;
}
const RegisterBank *OpBank = RBI.getRegBank(GEPOp.getReg(), MRI, TRI);
if (OpBank->getID() == AMDGPU::SGPRRegBankID)
GEPInfo.SgprParts.push_back(GEPOp.getReg());
else
GEPInfo.VgprParts.push_back(GEPOp.getReg());
}
AddrInfo.push_back(GEPInfo);
getAddrModeInfo(*PtrMI, MRI, AddrInfo);
}
bool AMDGPUInstructionSelector::isInstrUniform(const MachineInstr &MI) const {
if (!MI.hasOneMemOperand())
return false;
const MachineMemOperand *MMO = *MI.memoperands_begin();
const Value *Ptr = MMO->getValue();
// UndefValue means this is a load of a kernel input. These are uniform.
// Sometimes LDS instructions have constant pointers.
// If Ptr is null, then that means this mem operand contains a
// PseudoSourceValue like GOT.
if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
return true;
if (MMO->getAddrSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
return true;
const Instruction *I = dyn_cast<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.uniform");
}
bool AMDGPUInstructionSelector::hasVgprParts(ArrayRef<GEPInfo> AddrInfo) const {
for (const GEPInfo &GEPInfo : AddrInfo) {
if (!GEPInfo.VgprParts.empty())
return true;
}
return false;
}
void AMDGPUInstructionSelector::initM0(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
const LLT PtrTy = MRI->getType(I.getOperand(1).getReg());
unsigned AS = PtrTy.getAddressSpace();
if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) &&
STI.ldsRequiresM0Init()) {
// If DS instructions require M0 initializtion, insert it before selecting.
BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addImm(-1);
}
}
bool AMDGPUInstructionSelector::selectG_LOAD_ATOMICRMW(MachineInstr &I) const {
initM0(I);
return selectImpl(I, *CoverageInfo);
}
bool AMDGPUInstructionSelector::selectG_BRCOND(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineOperand &CondOp = I.getOperand(0);
Register CondReg = CondOp.getReg();
const DebugLoc &DL = I.getDebugLoc();
unsigned BrOpcode;
Register CondPhysReg;
const TargetRegisterClass *ConstrainRC;
// In SelectionDAG, we inspect the IR block for uniformity metadata to decide
// whether the branch is uniform when selecting the instruction. In
// GlobalISel, we should push that decision into RegBankSelect. Assume for now
// RegBankSelect knows what it's doing if the branch condition is scc, even
// though it currently does not.
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
if (!isVCC(CondReg, *MRI)) {
if (MRI->getType(CondReg) != LLT::scalar(32))
return false;
CondPhysReg = AMDGPU::SCC;
BrOpcode = AMDGPU::S_CBRANCH_SCC1;
// FIXME: Hack for isSCC tests
ConstrainRC = &AMDGPU::SGPR_32RegClass;
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
} else {
// FIXME: Do we have to insert an and with exec here, like in SelectionDAG?
// We sort of know that a VCC producer based on the register bank, that ands
// inactive lanes with 0. What if there was a logical operation with vcc
// producers in different blocks/with different exec masks?
// FIXME: Should scc->vcc copies and with exec?
CondPhysReg = TRI.getVCC();
BrOpcode = AMDGPU::S_CBRANCH_VCCNZ;
ConstrainRC = TRI.getBoolRC();
AMDGPU/GlobalISel: Replace handling of boolean values This solves selection failures with generated selection patterns, which would fail due to inferring the SGPR reg bank for virtual registers with a set register class instead of VCC bank. Use instruction selection would constrain the virtual register to a specific class, so when the def was selected later the bank no longer was set to VCC. Remove the SCC reg bank. SCC isn't directly addressable, so it requires copying from SCC to an allocatable 32-bit register during selection, so these might as well be treated as 32-bit SGPR values. Now any scalar boolean value that will produce an outupt in SCC should be widened during RegBankSelect to s32. Any s1 value should be a vector boolean during selection. This makes the vcc register bank unambiguous with a normal SGPR during selection. Summary of how this should now work: - G_TRUNC is always a no-op, and never should use a vcc bank result. - SALU boolean operations should be promoted to s32 in RegBankSelect apply mapping - An s1 value means vcc bank at selection. The exception is for legalization artifacts that use s1, which are never VCC. All other contexts should infer the VCC register classes for s1 typed registers. The LLT for the register is now needed to infer the correct register class. Extensions with vcc sources should be legalized to a select of constants during RegBankSelect. - Copy from non-vcc to vcc ensures high bits of the input value are cleared during selection. - SALU boolean inputs should ensure the inputs are 0/1. This includes select, conditional branches, and carry-ins. There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT selection ignores the usual register-bank from register class functions, and can't handle truncates with VCC result banks. I think this is OK, since the artifacts are specially treated anyway. This does require some care to avoid producing cases with vcc. There will also be no 100% reliable way to verify this rule is followed in selection in case of register classes, and violations manifests themselves as invalid copy instructions much later. Standard phi handling also only considers the bank of the result register, and doesn't insert copies to make the source banks match. This doesn't work for vcc, so we have to manually correct phi inputs in this case. We should add a verifier check to make sure there are no phis with mixed vcc and non-vcc register bank inputs. There's also some duplication with the LegalizerHelper, and some code which should live in the helper. I don't see a good way to share special knowledge about what types to use for intermediate operations depending on the bank for example. Using the helper to replace extensions with selects also seems somewhat awkward to me. Another issue is there are some contexts calling getRegBankFromRegClass that apparently don't have the LLT type for the register, but I haven't yet run into a real issue from this. This also introduces new unnecessary instructions in most cases, since we don't yet try to optimize out the zext when the source is known to come from a compare.
2019-11-02 17:30:59 +01:00
}
if (!MRI->getRegClassOrNull(CondReg))
MRI->setRegClass(CondReg, ConstrainRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CondPhysReg)
.addReg(CondReg);
BuildMI(*BB, &I, DL, TII.get(BrOpcode))
.addMBB(I.getOperand(1).getMBB());
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_FRAME_INDEX(MachineInstr &I) const {
Register DstReg = I.getOperand(0).getReg();
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID;
I.setDesc(TII.get(IsVGPR ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32));
if (IsVGPR)
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
return RBI.constrainGenericRegister(
DstReg, IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass, *MRI);
}
bool AMDGPUInstructionSelector::selectG_PTR_MASK(MachineInstr &I) const {
uint64_t Align = I.getOperand(2).getImm();
const uint64_t Mask = ~((UINT64_C(1) << Align) - 1);
MachineBasicBlock *BB = I.getParent();
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID;
unsigned NewOpc = IsVGPR ? AMDGPU::V_AND_B32_e64 : AMDGPU::S_AND_B32;
unsigned MovOpc = IsVGPR ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32;
const TargetRegisterClass &RegRC
= IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass;
LLT Ty = MRI->getType(DstReg);
const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(Ty, *DstRB,
*MRI);
const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(Ty, *SrcRB,
*MRI);
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI))
return false;
const DebugLoc &DL = I.getDebugLoc();
Register ImmReg = MRI->createVirtualRegister(&RegRC);
BuildMI(*BB, &I, DL, TII.get(MovOpc), ImmReg)
.addImm(Mask);
if (Ty.getSizeInBits() == 32) {
BuildMI(*BB, &I, DL, TII.get(NewOpc), DstReg)
.addReg(SrcReg)
.addReg(ImmReg);
I.eraseFromParent();
return true;
}
Register HiReg = MRI->createVirtualRegister(&RegRC);
Register LoReg = MRI->createVirtualRegister(&RegRC);
Register MaskLo = MRI->createVirtualRegister(&RegRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(SrcReg, 0, AMDGPU::sub0);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(SrcReg, 0, AMDGPU::sub1);
BuildMI(*BB, &I, DL, TII.get(NewOpc), MaskLo)
.addReg(LoReg)
.addReg(ImmReg);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(MaskLo)
.addImm(AMDGPU::sub0)
.addReg(HiReg)
.addImm(AMDGPU::sub1);
I.eraseFromParent();
return true;
}
/// Return the register to use for the index value, and the subregister to use
/// for the indirectly accessed register.
static std::pair<Register, unsigned>
computeIndirectRegIndex(MachineRegisterInfo &MRI,
const SIRegisterInfo &TRI,
const TargetRegisterClass *SuperRC,
Register IdxReg,
unsigned EltSize) {
Register IdxBaseReg;
int Offset;
MachineInstr *Unused;
std::tie(IdxBaseReg, Offset, Unused)
= AMDGPU::getBaseWithConstantOffset(MRI, IdxReg);
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(SuperRC, EltSize);
// Skip out of bounds offsets, or else we would end up using an undefined
// register.
if (static_cast<unsigned>(Offset) >= SubRegs.size())
return std::make_pair(IdxReg, SubRegs[0]);
return std::make_pair(IdxBaseReg, SubRegs[Offset]);
}
bool AMDGPUInstructionSelector::selectG_EXTRACT_VECTOR_ELT(
MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register IdxReg = MI.getOperand(2).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(SrcReg);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI);
// The index must be scalar. If it wasn't RegBankSelect should have moved this
// into a waterfall loop.
if (IdxRB->getID() != AMDGPU::SGPRRegBankID)
return false;
const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(SrcTy, *SrcRB,
*MRI);
const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(DstTy, *DstRB,
*MRI);
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI))
return false;
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const bool Is64 = DstTy.getSizeInBits() == 64;
unsigned SubReg;
std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, SrcRC, IdxReg,
DstTy.getSizeInBits() / 8);
if (SrcRB->getID() == AMDGPU::SGPRRegBankID) {
if (DstTy.getSizeInBits() != 32 && !Is64)
return false;
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
unsigned Opc = Is64 ? AMDGPU::S_MOVRELS_B64 : AMDGPU::S_MOVRELS_B32;
BuildMI(*BB, &MI, DL, TII.get(Opc), DstReg)
.addReg(SrcReg, 0, SubReg)
.addReg(SrcReg, RegState::Implicit);
MI.eraseFromParent();
return true;
}
if (SrcRB->getID() != AMDGPU::VGPRRegBankID || DstTy.getSizeInBits() != 32)
return false;
if (!STI.useVGPRIndexMode()) {
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::V_MOVRELS_B32_e32), DstReg)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit);
MI.eraseFromParent();
return true;
}
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(IdxReg)
.addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
BuildMI(*BB, MI, DL, TII.get(AMDGPU::V_MOV_B32_e32), DstReg)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_OFF));
MI.eraseFromParent();
return true;
}
// TODO: Fold insert_vector_elt (extract_vector_elt) into movrelsd
bool AMDGPUInstructionSelector::selectG_INSERT_VECTOR_ELT(
MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register VecReg = MI.getOperand(1).getReg();
Register ValReg = MI.getOperand(2).getReg();
Register IdxReg = MI.getOperand(3).getReg();
LLT VecTy = MRI->getType(DstReg);
LLT ValTy = MRI->getType(ValReg);
unsigned VecSize = VecTy.getSizeInBits();
unsigned ValSize = ValTy.getSizeInBits();
const RegisterBank *VecRB = RBI.getRegBank(VecReg, *MRI, TRI);
const RegisterBank *ValRB = RBI.getRegBank(ValReg, *MRI, TRI);
const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI);
assert(VecTy.getElementType() == ValTy);
// The index must be scalar. If it wasn't RegBankSelect should have moved this
// into a waterfall loop.
if (IdxRB->getID() != AMDGPU::SGPRRegBankID)
return false;
const TargetRegisterClass *VecRC = TRI.getRegClassForTypeOnBank(VecTy, *VecRB,
*MRI);
const TargetRegisterClass *ValRC = TRI.getRegClassForTypeOnBank(ValTy, *ValRB,
*MRI);
if (!RBI.constrainGenericRegister(VecReg, *VecRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *VecRC, *MRI) ||
!RBI.constrainGenericRegister(ValReg, *ValRC, *MRI) ||
!RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI))
return false;
if (VecRB->getID() == AMDGPU::VGPRRegBankID && ValSize != 32)
return false;
unsigned SubReg;
std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, VecRC, IdxReg,
ValSize / 8);
const bool IndexMode = VecRB->getID() == AMDGPU::VGPRRegBankID &&
STI.useVGPRIndexMode();
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
if (IndexMode) {
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(IdxReg)
.addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
} else {
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
}
const MCInstrDesc &RegWriteOp
= TII.getIndirectRegWritePseudo(VecSize, ValSize,
VecRB->getID() == AMDGPU::SGPRRegBankID);
BuildMI(*BB, MI, DL, RegWriteOp, DstReg)
.addReg(VecReg)
.addReg(ValReg)
.addImm(SubReg);
if (IndexMode)
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_OFF));
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::select(MachineInstr &I) {
if (I.isPHI())
return selectPHI(I);
if (!I.isPreISelOpcode()) {
if (I.isCopy())
return selectCOPY(I);
return true;
}
switch (I.getOpcode()) {
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
if (selectG_AND_OR_XOR(I))
return true;
return selectImpl(I, *CoverageInfo);
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_ADD_SUB(I);
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_USUBE:
return selectG_UADDO_USUBO_UADDE_USUBE(I);
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_BITCAST:
case TargetOpcode::G_PTRTOINT:
return selectCOPY(I);
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return selectG_CONSTANT(I);
case TargetOpcode::G_FNEG:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_FNEG(I);
case TargetOpcode::G_EXTRACT:
return selectG_EXTRACT(I);
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONCAT_VECTORS:
return selectG_MERGE_VALUES(I);
case TargetOpcode::G_UNMERGE_VALUES:
return selectG_UNMERGE_VALUES(I);
case TargetOpcode::G_PTR_ADD:
return selectG_PTR_ADD(I);
case TargetOpcode::G_IMPLICIT_DEF:
return selectG_IMPLICIT_DEF(I);
case TargetOpcode::G_INSERT:
return selectG_INSERT(I);
case TargetOpcode::G_INTRINSIC:
return selectG_INTRINSIC(I);
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
return selectG_INTRINSIC_W_SIDE_EFFECTS(I);
case TargetOpcode::G_ICMP:
if (selectG_ICMP(I))
return true;
return selectImpl(I, *CoverageInfo);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_ATOMIC_CMPXCHG:
case TargetOpcode::G_ATOMICRMW_XCHG:
case TargetOpcode::G_ATOMICRMW_ADD:
case TargetOpcode::G_ATOMICRMW_SUB:
case TargetOpcode::G_ATOMICRMW_AND:
case TargetOpcode::G_ATOMICRMW_OR:
case TargetOpcode::G_ATOMICRMW_XOR:
case TargetOpcode::G_ATOMICRMW_MIN:
case TargetOpcode::G_ATOMICRMW_MAX:
case TargetOpcode::G_ATOMICRMW_UMIN:
case TargetOpcode::G_ATOMICRMW_UMAX:
case TargetOpcode::G_ATOMICRMW_FADD:
return selectG_LOAD_ATOMICRMW(I);
case TargetOpcode::G_SELECT:
return selectG_SELECT(I);
case TargetOpcode::G_STORE:
return selectG_STORE(I);
case TargetOpcode::G_TRUNC:
return selectG_TRUNC(I);
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_SZA_EXT(I);
case TargetOpcode::G_BRCOND:
return selectG_BRCOND(I);
case TargetOpcode::G_FRAME_INDEX:
return selectG_FRAME_INDEX(I);
case TargetOpcode::G_PTR_MASK:
return selectG_PTR_MASK(I);
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
return selectG_EXTRACT_VECTOR_ELT(I);
case TargetOpcode::G_INSERT_VECTOR_ELT:
return selectG_INSERT_VECTOR_ELT(I);
case AMDGPU::G_AMDGPU_ATOMIC_INC:
case AMDGPU::G_AMDGPU_ATOMIC_DEC:
initM0(I);
return selectImpl(I, *CoverageInfo);
default:
return selectImpl(I, *CoverageInfo);
}
return false;
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVCSRC(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); }
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectVOP3ModsImpl(
Register Src) const {
unsigned Mods = 0;
MachineInstr *MI = getDefIgnoringCopies(Src, *MRI);
if (MI && MI->getOpcode() == AMDGPU::G_FNEG) {
Src = MI->getOperand(1).getReg();
Mods |= SISrcMods::NEG;
MI = getDefIgnoringCopies(Src, *MRI);
}
if (MI && MI->getOpcode() == AMDGPU::G_FABS) {
Src = MI->getOperand(1).getReg();
Mods |= SISrcMods::ABS;
}
return std::make_pair(Src, Mods);
}
///
/// This will select either an SGPR or VGPR operand and will save us from
/// having to write an extra tablegen pattern.
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVSRC0(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods0(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root.getReg());
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); }, // src0_mods
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3OMods(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root.getReg());
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods
}};
}
2020-01-26 06:25:35 +01:00
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3NoMods(MachineOperand &Root) const {
Register Reg = Root.getReg();
const MachineInstr *Def = getDefIgnoringCopies(Reg, *MRI);
if (Def && (Def->getOpcode() == AMDGPU::G_FNEG ||
Def->getOpcode() == AMDGPU::G_FABS))
return {};
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); },
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods_nnan(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root.getReg());
if (!TM.Options.NoNaNsFPMath && !isKnownNeverNaN(Src, *MRI))
return None;
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3OpSelMods0(MachineOperand &Root) const {
// FIXME: Handle clamp and op_sel
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // src_mods
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // clamp
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3OpSelMods(MachineOperand &Root) const {
// FIXME: Handle op_sel
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdImm(MachineOperand &Root) const {
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo);
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
if (!AMDGPU::isLegalSMRDImmOffset(STI, GEPInfo.Imm))
return None;
unsigned PtrReg = GEPInfo.SgprParts[0];
int64_t EncodedImm = AMDGPU::getSMRDEncodedOffset(STI, GEPInfo.Imm);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(EncodedImm); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdImm32(MachineOperand &Root) const {
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo);
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
unsigned PtrReg = GEPInfo.SgprParts[0];
int64_t EncodedImm = AMDGPU::getSMRDEncodedOffset(STI, GEPInfo.Imm);
if (!isUInt<32>(EncodedImm))
return None;
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(EncodedImm); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdSgpr(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*MI, *MRI, AddrInfo);
// FIXME: We should shrink the GEP if the offset is known to be <= 32-bits,
// then we can select all ptr + 32-bit offsets not just immediate offsets.
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
if (!GEPInfo.Imm || !isUInt<32>(GEPInfo.Imm))
return None;
// If we make it this far we have a load with an 32-bit immediate offset.
// It is OK to select this using a sgpr offset, because we have already
// failed trying to select this load into one of the _IMM variants since
// the _IMM Patterns are considered before the _SGPR patterns.
unsigned PtrReg = GEPInfo.SgprParts[0];
Register OffsetReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), OffsetReg)
.addImm(GEPInfo.Imm);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(OffsetReg); }
}};
}
template <bool Signed>
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffsetImpl(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
InstructionSelector::ComplexRendererFns Default = {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // offset
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // slc
}};
if (!STI.hasFlatInstOffsets())
return Default;
const MachineInstr *OpDef = MRI->getVRegDef(Root.getReg());
if (!OpDef || OpDef->getOpcode() != AMDGPU::G_PTR_ADD)
return Default;
Optional<int64_t> Offset =
getConstantVRegVal(OpDef->getOperand(2).getReg(), *MRI);
if (!Offset.hasValue())
return Default;
unsigned AddrSpace = (*MI->memoperands_begin())->getAddrSpace();
if (!TII.isLegalFLATOffset(Offset.getValue(), AddrSpace, Signed))
return Default;
Register BasePtr = OpDef->getOperand(1).getReg();
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(BasePtr); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset.getValue()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // slc
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffset(MachineOperand &Root) const {
return selectFlatOffsetImpl<false>(Root);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffsetSigned(MachineOperand &Root) const {
return selectFlatOffsetImpl<true>(Root);
}
static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
return PSV && PSV->isStack();
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFScratchOffen(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MBB->getParent();
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
int64_t Offset = 0;
if (mi_match(Root.getReg(), *MRI, m_ICst(Offset))) {
Register HighBits = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
// TODO: Should this be inside the render function? The iterator seems to
// move.
BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::V_MOV_B32_e32),
HighBits)
.addImm(Offset & ~4095);
return {{[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(Info->getScratchRSrcReg());
},
[=](MachineInstrBuilder &MIB) { // vaddr
MIB.addReg(HighBits);
},
[=](MachineInstrBuilder &MIB) { // soffset
const MachineMemOperand *MMO = *MI->memoperands_begin();
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
Register SOffsetReg = isStackPtrRelative(PtrInfo)
? Info->getStackPtrOffsetReg()
: Info->getScratchWaveOffsetReg();
MIB.addReg(SOffsetReg);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset & 4095);
}}};
}
assert(Offset == 0);
// Try to fold a frame index directly into the MUBUF vaddr field, and any
// offsets.
Optional<int> FI;
Register VAddr = Root.getReg();
if (const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg())) {
if (isBaseWithConstantOffset(Root, *MRI)) {
const MachineOperand &LHS = RootDef->getOperand(1);
const MachineOperand &RHS = RootDef->getOperand(2);
const MachineInstr *LHSDef = MRI->getVRegDef(LHS.getReg());
const MachineInstr *RHSDef = MRI->getVRegDef(RHS.getReg());
if (LHSDef && RHSDef) {
int64_t PossibleOffset =
RHSDef->getOperand(1).getCImm()->getSExtValue();
if (SIInstrInfo::isLegalMUBUFImmOffset(PossibleOffset) &&
(!STI.privateMemoryResourceIsRangeChecked() ||
KnownBits->signBitIsZero(LHS.getReg()))) {
if (LHSDef->getOpcode() == AMDGPU::G_FRAME_INDEX)
FI = LHSDef->getOperand(1).getIndex();
else
VAddr = LHS.getReg();
Offset = PossibleOffset;
}
}
} else if (RootDef->getOpcode() == AMDGPU::G_FRAME_INDEX) {
FI = RootDef->getOperand(1).getIndex();
}
}
// If we don't know this private access is a local stack object, it needs to
// be relative to the entry point's scratch wave offset register.
// TODO: Should split large offsets that don't fit like above.
// TODO: Don't use scratch wave offset just because the offset didn't fit.
Register SOffset = FI.hasValue() ? Info->getStackPtrOffsetReg()
: Info->getScratchWaveOffsetReg();
return {{[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(Info->getScratchRSrcReg());
},
[=](MachineInstrBuilder &MIB) { // vaddr
if (FI.hasValue())
MIB.addFrameIndex(FI.getValue());
else
MIB.addReg(VAddr);
},
[=](MachineInstrBuilder &MIB) { // soffset
MIB.addReg(SOffset);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset);
}}};
}
bool AMDGPUInstructionSelector::isDSOffsetLegal(Register Base,
int64_t Offset,
unsigned OffsetBits) const {
if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
(OffsetBits == 8 && !isUInt<8>(Offset)))
return false;
if (STI.hasUsableDSOffset() || STI.unsafeDSOffsetFoldingEnabled())
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return KnownBits->signBitIsZero(Base);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFScratchOffset(
MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
int64_t Offset = 0;
if (!mi_match(Root.getReg(), *MRI, m_ICst(Offset)) ||
!SIInstrInfo::isLegalMUBUFImmOffset(Offset))
return {};
const MachineFunction *MF = MBB->getParent();
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
const MachineMemOperand *MMO = *MI->memoperands_begin();
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
Register SOffsetReg = isStackPtrRelative(PtrInfo)
? Info->getStackPtrOffsetReg()
: Info->getScratchWaveOffsetReg();
return {{
[=](MachineInstrBuilder &MIB) {
MIB.addReg(Info->getScratchRSrcReg());
}, // rsrc
[=](MachineInstrBuilder &MIB) { MIB.addReg(SOffsetReg); }, // soffset
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); } // offset
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectDS1Addr1OffsetImpl(MachineOperand &Root) const {
const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg());
if (!RootDef)
return std::make_pair(Root.getReg(), 0);
int64_t ConstAddr = 0;
if (isBaseWithConstantOffset(Root, *MRI)) {
const MachineOperand &LHS = RootDef->getOperand(1);
const MachineOperand &RHS = RootDef->getOperand(2);
const MachineInstr *LHSDef = MRI->getVRegDef(LHS.getReg());
const MachineInstr *RHSDef = MRI->getVRegDef(RHS.getReg());
if (LHSDef && RHSDef) {
int64_t PossibleOffset =
RHSDef->getOperand(1).getCImm()->getSExtValue();
if (isDSOffsetLegal(LHS.getReg(), PossibleOffset, 16)) {
// (add n0, c0)
return std::make_pair(LHS.getReg(), PossibleOffset);
}
}
} else if (RootDef->getOpcode() == AMDGPU::G_SUB) {
// TODO
} else if (mi_match(Root.getReg(), *MRI, m_ICst(ConstAddr))) {
// TODO
}
return std::make_pair(Root.getReg(), 0);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectDS1Addr1Offset(MachineOperand &Root) const {
Register Reg;
unsigned Offset;
std::tie(Reg, Offset) = selectDS1Addr1OffsetImpl(Root);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }
}};
}
/// If \p Root is a G_PTR_ADD with a G_CONSTANT on the right hand side, return
/// the base value with the constant offset. There may be intervening copies
/// between \p Root and the identified constant. Returns \p Root, 0 if this does
/// not match the pattern.
std::pair<Register, int64_t>
AMDGPUInstructionSelector::getPtrBaseWithConstantOffset(
Register Root, const MachineRegisterInfo &MRI) const {
MachineInstr *RootI = MRI.getVRegDef(Root);
if (RootI->getOpcode() != TargetOpcode::G_PTR_ADD)
return {Root, 0};
MachineOperand &RHS = RootI->getOperand(2);
Optional<ValueAndVReg> MaybeOffset
= getConstantVRegValWithLookThrough(RHS.getReg(), MRI, true);
if (!MaybeOffset)
return {Root, 0};
return {RootI->getOperand(1).getReg(), MaybeOffset->Value};
}
static void addZeroImm(MachineInstrBuilder &MIB) {
MIB.addImm(0);
}
/// Return a resource descriptor for use with an arbitrary 64-bit pointer. If \p
/// BasePtr is not valid, a null base pointer will be used.
static Register buildRSRC(MachineIRBuilder &B, MachineRegisterInfo &MRI,
uint32_t FormatLo, uint32_t FormatHi,
Register BasePtr) {
Register RSrc2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register RSrc3 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register RSrcHi = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
Register RSrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(RSrc2)
.addImm(FormatLo);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(RSrc3)
.addImm(FormatHi);
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
B.buildInstr(AMDGPU::REG_SEQUENCE)
.addDef(RSrcHi)
.addReg(RSrc2)
.addImm(AMDGPU::sub0)
.addReg(RSrc3)
.addImm(AMDGPU::sub1);
Register RSrcLo = BasePtr;
if (!BasePtr) {
RSrcLo = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
B.buildInstr(AMDGPU::S_MOV_B64)
.addDef(RSrcLo)
.addImm(0);
}
B.buildInstr(AMDGPU::REG_SEQUENCE)
.addDef(RSrc)
.addReg(RSrcLo)
.addImm(AMDGPU::sub0_sub1)
.addReg(RSrcHi)
.addImm(AMDGPU::sub2_sub3);
return RSrc;
}
static Register buildAddr64RSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI,
const SIInstrInfo &TII, Register BasePtr) {
uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat();
// FIXME: Why are half the "default" bits ignored based on the addressing
// mode?
return buildRSRC(B, MRI, 0, Hi_32(DefaultFormat), BasePtr);
}
static Register buildOffsetSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI,
const SIInstrInfo &TII, Register BasePtr) {
uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat();
// FIXME: Why are half the "default" bits ignored based on the addressing
// mode?
return buildRSRC(B, MRI, -1, Hi_32(DefaultFormat), BasePtr);
}
AMDGPUInstructionSelector::MUBUFAddressData
AMDGPUInstructionSelector::parseMUBUFAddress(Register Src) const {
MUBUFAddressData Data;
Data.N0 = Src;
Register PtrBase;
int64_t Offset;
std::tie(PtrBase, Offset) = getPtrBaseWithConstantOffset(Src, *MRI);
if (isUInt<32>(Offset)) {
Data.N0 = PtrBase;
Data.Offset = Offset;
}
if (MachineInstr *InputAdd
= getOpcodeDef(TargetOpcode::G_PTR_ADD, Data.N0, *MRI)) {
Data.N2 = InputAdd->getOperand(1).getReg();
Data.N3 = InputAdd->getOperand(2).getReg();
// FIXME: Need to fix extra SGPR->VGPRcopies inserted
// FIXME: Don't know this was defined by operand 0
//
// TODO: Remove this when we have copy folding optimizations after
// RegBankSelect.
Data.N2 = getDefIgnoringCopies(Data.N2, *MRI)->getOperand(0).getReg();
Data.N3 = getDefIgnoringCopies(Data.N3, *MRI)->getOperand(0).getReg();
}
return Data;
}
/// Return if the addr64 mubuf mode should be used for the given address.
bool AMDGPUInstructionSelector::shouldUseAddr64(MUBUFAddressData Addr) const {
// (ptr_add N2, N3) -> addr64, or
// (ptr_add (ptr_add N2, N3), C1) -> addr64
if (Addr.N2)
return true;
const RegisterBank *N0Bank = RBI.getRegBank(Addr.N0, *MRI, TRI);
return N0Bank->getID() == AMDGPU::VGPRRegBankID;
}
/// Split an immediate offset \p ImmOffset depending on whether it fits in the
/// immediate field. Modifies \p ImmOffset and sets \p SOffset to the variable
/// component.
void AMDGPUInstructionSelector::splitIllegalMUBUFOffset(
MachineIRBuilder &B, Register &SOffset, int64_t &ImmOffset) const {
if (SIInstrInfo::isLegalMUBUFImmOffset(ImmOffset))
return;
// Illegal offset, store it in soffset.
SOffset = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(SOffset)
.addImm(ImmOffset);
ImmOffset = 0;
}
bool AMDGPUInstructionSelector::selectMUBUFAddr64Impl(
MachineOperand &Root, Register &VAddr, Register &RSrcReg,
Register &SOffset, int64_t &Offset) const {
// FIXME: Predicates should stop this from reaching here.
// addr64 bit was removed for volcanic islands.
if (!STI.hasAddr64() || STI.useFlatForGlobal())
return false;
MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg());
if (!shouldUseAddr64(AddrData))
return false;
Register N0 = AddrData.N0;
Register N2 = AddrData.N2;
Register N3 = AddrData.N3;
Offset = AddrData.Offset;
// Base pointer for the SRD.
Register SRDPtr;
if (N2) {
if (RBI.getRegBank(N2, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
assert(N3);
if (RBI.getRegBank(N3, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
// Both N2 and N3 are divergent. Use N0 (the result of the add) as the
// addr64, and construct the default resource from a 0 address.
VAddr = N0;
} else {
SRDPtr = N3;
VAddr = N2;
}
} else {
// N2 is not divergent.
SRDPtr = N2;
VAddr = N3;
}
} else if (RBI.getRegBank(N0, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
// Use the default null pointer in the resource
VAddr = N0;
} else {
// N0 -> offset, or
// (N0 + C1) -> offset
SRDPtr = N0;
}
MachineIRBuilder B(*Root.getParent());
RSrcReg = buildAddr64RSrc(B, *MRI, TII, SRDPtr);
splitIllegalMUBUFOffset(B, SOffset, Offset);
return true;
}
bool AMDGPUInstructionSelector::selectMUBUFOffsetImpl(
MachineOperand &Root, Register &RSrcReg, Register &SOffset,
int64_t &Offset) const {
MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg());
if (shouldUseAddr64(AddrData))
return false;
// N0 -> offset, or
// (N0 + C1) -> offset
Register SRDPtr = AddrData.N0;
Offset = AddrData.Offset;
// TODO: Look through extensions for 32-bit soffset.
MachineIRBuilder B(*Root.getParent());
RSrcReg = buildOffsetSrc(B, *MRI, TII, SRDPtr);
splitIllegalMUBUFOffset(B, SOffset, Offset);
return true;
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFAddr64(MachineOperand &Root) const {
Register VAddr;
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFAddr64Impl(Root, VAddr, RSrcReg, SOffset, Offset))
return {};
// FIXME: Use defaulted operands for trailing 0s and remove from the complex
// pattern.
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // vaddr
MIB.addReg(VAddr);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset);
},
addZeroImm, // glc
addZeroImm, // slc
addZeroImm, // tfe
addZeroImm, // dlc
addZeroImm // swz
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFOffset(MachineOperand &Root) const {
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFOffsetImpl(Root, RSrcReg, SOffset, Offset))
return {};
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, // offset
addZeroImm, // glc
addZeroImm, // slc
addZeroImm, // tfe
addZeroImm, // dlc
addZeroImm // swz
}};
}
void AMDGPUInstructionSelector::renderTruncImm32(MachineInstrBuilder &MIB,
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
Optional<int64_t> CstVal = getConstantVRegVal(MI.getOperand(0).getReg(), *MRI);
assert(CstVal && "Expected constant value");
MIB.addImm(CstVal.getValue());
}
void AMDGPUInstructionSelector::renderNegateImm(MachineInstrBuilder &MIB,
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
MIB.addImm(-MI.getOperand(1).getCImm()->getSExtValue());
}
void AMDGPUInstructionSelector::renderBitcastImm(MachineInstrBuilder &MIB,
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx == -1);
const MachineOperand &Op = MI.getOperand(1);
if (MI.getOpcode() == TargetOpcode::G_FCONSTANT)
MIB.addImm(Op.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
else {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
MIB.addImm(Op.getCImm()->getSExtValue());
}
}
void AMDGPUInstructionSelector::renderPopcntImm(MachineInstrBuilder &MIB,
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
MIB.addImm(MI.getOperand(1).getCImm()->getValue().countPopulation());
}
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
/// This only really exists to satisfy DAG type checking machinery, so is a
/// no-op here.
void AMDGPUInstructionSelector::renderTruncTImm(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
TableGen/GlobalISel: Add way for SDNodeXForm to work on timm The current implementation assumes there is an instruction associated with the transform, but this is not the case for timm/TargetConstant/immarg values. These transforms should directly operate on a specific MachineOperand in the source instruction. TableGen would assert if you attempted to define an equivalent GISDNodeXFormEquiv using timm when it failed to find the instruction matcher. Specially recognize SDNodeXForms on timm, and pass the operand index to the render function. Ideally this would be a separate render function type that looks like void renderFoo(MachineInstrBuilder, const MachineOperand&), but this proved to be somewhat mechanically painful. Add an optional operand index which will only be passed if the transform should only look at the one source operand. Theoretically it would also be possible to only ever pass the MachineOperand, and the existing renderers would check the parent. I think that would be somewhat ugly for the standard usage which may want to inspect other operands, and I also think MachineOperand should eventually not carry a pointer to the parent instruction. Use it in one sample pattern. This isn't a great example, since the transform exists to satisfy DAG type constraints. This could also be avoided by just changing the MachineInstr's arbitrary choice of operand type from i16 to i32. Other patterns have nontrivial uses, but this serves as the simplest example. One flaw this still has is if you try to use an SDNodeXForm defined for imm, but the source pattern uses timm, you still see the "Failed to lookup instruction" assert. However, there is now a way to avoid it.
2020-01-08 18:53:15 +01:00
MIB.addImm(MI.getOperand(OpIdx).getImm());
}
void AMDGPUInstructionSelector::renderExtractGLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm(MI.getOperand(OpIdx).getImm() & 1);
}
void AMDGPUInstructionSelector::renderExtractSLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 1) & 1);
}
void AMDGPUInstructionSelector::renderExtractDLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 2) & 1);
}
void AMDGPUInstructionSelector::renderExtractSWZ(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 3) & 1);
}
bool AMDGPUInstructionSelector::isInlineImmediate16(int64_t Imm) const {
return AMDGPU::isInlinableLiteral16(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate32(int64_t Imm) const {
return AMDGPU::isInlinableLiteral32(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate64(int64_t Imm) const {
return AMDGPU::isInlinableLiteral64(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate(const APFloat &Imm) const {
return TII.isInlineConstant(Imm);
}